

Teacher: Gianni A. Di Caro

OPTIMIZATION PROBLEMS

- Casting AI problems as optimization problems has been one of the primary trends of the last 15 years
- A seemingly remarkable fact:

	${ m Search} { m problems}$	Optimization problems
Variable type	Discrete	Continuous
# solutions	Finite	Infinite
Complexity	Exponential	Polynomial (<i>Convex</i> class)

FORMAL DEFINITION

- Optimization problems are of the form $\min_{x} f(x)$ such that $x \in \mathcal{F}$
 - $f: \mathbb{R}^n \mapsto \mathbb{R}$ is the objective function
 - $x \in \mathbb{R}^n$ is the optimization vector variable
 - $\mathcal{F} \subseteq \mathbb{R}^n$ is the feasible set (constraints)
- $x^* \in \mathbb{R}^n$ is an optimal solution (global minimum) if $x^* \in \mathcal{F}$ and $f(x^*) \leq f(x)$ for all $x \in \mathcal{F}$
- Mathematical programming problem

PROPERTIES

- Given an optimization problem: $\min_{x} f(x)$ such that $x \in \mathcal{F}$
- $\min_{x} f(x)$ is equivalent to $\max_{x} f(x)$
- If $\mathcal{F} = \emptyset$ the problem has no solution (unfeasible)
- If \mathcal{F} is an open set, only the inf (sup) is guaranteed but not min (max)
- The problem is unbounded if $f \to -\infty$

UNCONSTRAINED 1D EXAMPLE CASES

15781 Fall 2016: Lecture 13

UNCONSTRAINED 3D EXAMPLE CASES

15781 Fall 2016: Lecture 13

(CONSTRAINED) EXAMPLE CASES OF MATHEMATICAL PROGRAMMING

	Linear	Convex	Reals	Certainty
min _ī s.t.	$2x_1 + x_2 - 4x_3 x_1 + x_2 \leq 5 x_1, x_2, x_3 \ge 0$	$2x_1 + x_2 - 4x_3 x_1^4 + x_2 \le 5 x_1 + x_3 \ge 0$	$2x_1 + x_2 - 4x_3 x_1 + x_2 \leq 5 x_1, x_2, x_3 \ge 0$	$2x_1 + x_2 - 4x_3 x_1 + x_2 \leq 5 x_1, x_2, x_3 \in \{0, 1\}$
	$2x_{1} + x_{2} - 4x_{3}^{3}$ $x_{1} + \sqrt{x_{2}} \leq 5$ $x_{1}, x_{2}, x_{3} \geq 0$	$2x_1 + x_2 + 4x_3^3$ $x_1 + sin(x_2) \leq 5$ $x_1 + x_3 \geq 0$	$2x_1 + x_2 - 4x_3$ $x_1 + x_2 \leq 5$ $x_1, x_2, x_3 \in \mathbb{Z}^+$	$2x_1 + x_2 - \mathbb{E}_{\omega}Q(x_3, \omega) x_1 + x_2 \leq 5 x_1, x_2, x_3 0, \ \omega \sim U[0, 10]$
ľ	Non-linear	Non-convex	Zeals	Stochastic

15781 Fall 2016: Lecture 13

Example of constrained MP

15781 Fall 2016: Lecture 13

EXAMPLE: LEAST-SQUARES FITTING

• Given
$$(x_i, y_i)$$
 for
 $i = 1, ..., m$, find
 $h(x) = ax + b$ that
optimizes
 $\min_{a,b} \sum_{i=1}^{m} (ax_i + b - y_i)^2$
 $(a \text{ is slope, } b \text{ is}$
intercept)

15781 Fall 2016: Lecture 13

EXAMPLE: WEBER POINT

 Given (x_i, y_i) for i = 1, ..., m, find the point (x*, y*) that minimizes the sum of Euclidean distances:

$$\min_{x^*,y^*} \sum_{i=1}^m \sqrt{(x^* - x_i)^2 + (y^* - y_i)^2}$$

• Many modifications, e.g., might want $a \le x^* \le b, c \le y^* \le d$

15781 Fall 2016: Lecture 13

Carnegie Mellon University 10

 (x_i, y_i)

 (x^*, y^*)

MACHINE LEARNING

• Many machine learning problems can be described as minimizing a loss function

$$\min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^m L\left(\sum_{j=1}^n \alpha_j x_j^{(i)}, y^{(i)}\right)$$

•
$$\boldsymbol{x}^{(i)} \in \mathbb{R}^n$$
 are input features

- ∘ $y^{(i)} \in \mathbb{R}$ (regression) or $y^{(i)} \in \{0,1\}$ (classification) are outputs
- $\alpha \in \mathbb{R}^n$ are model parameters

15781 Fall 2016: Lecture 13

THE OPTIMIZATION UNIVERSE

15781 Fall 2016: Lecture 13

CONVEX OPTIMIZATION

• A convex optimization problem is a special case of a general optimization problem $\min f(\mathbf{x})$ such that $x \in \mathcal{F}$ where the target function $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function, and the feasible region \mathcal{F} is a convex set

CONVEX SETS

- A set $\mathcal{F} \subseteq \mathbb{R}^n$ is convex if for all $x, y \in \mathcal{F}$ and $\theta \in [0,1], \ \theta x + (1-\theta)y \in \mathcal{F}$
- A set is convex if, given two points in it, it contains all their possible linear (convex) combinations

CONVEX COMBINATION

• Given k points $P_i \in \mathbb{R}^n$, i = 1, ..., k, a point $z \in \mathbb{R}^n$ is a convex combination of the points P_i if:

$$z = \sum_{i=1}^{k} \lambda_i \mathbf{P}_i, \quad \lambda_i \ge 0 \ \forall i, \quad \sum_{i=1}^{k} \lambda_i = 1$$

• If $k = 2 \rightarrow z = \lambda P_1 + (1 - \lambda) P_2$, $\lambda_1 = \lambda$, $\lambda_2 = (1 - \lambda)$

• Example: k = 2, $P_1 = (2,1)$, $P_2 = (6,3)$, $\lambda = 0.75 \rightarrow z = (3,1.5)$

15781 Fall 2016: Lecture 13

CONVEX HULL

- Given a set P of k points of \mathbb{R}^n , $P = \{P_1, P_2, \ldots, P_k\}$, the smallest convex set, conv(P), that includes P is the **convex hull**, $P \subseteq conv(P)$
- conv(P) is the set of all convex combinations of the points in P:

$$conv(P) = \{ z \in \mathbb{R}^n : z = \sum_{i=1}^k \lambda_i P_i, \quad \forall \lambda_i, i = 1, \dots, k \mid \lambda_i \ge 0 \land \sum_{i=1}^k \lambda_i = 1 \}$$

15781 Fall 2016: Lecture 13

EXAMPLES OF CONVEX SETS

- $\mathcal{F} = \{ \boldsymbol{x} \in \mathbb{R}^n : \forall i = 1, \dots, n, a \le x_i \le b \}$
- Proof:
 - Let $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{F}$, and $\boldsymbol{\theta} \in [0,1]$

• For all
$$i = 1, ..., n_i$$

- $a \le x_i \text{ and } a \le y_i, \text{ so}$ $\theta x_i + (1 - \theta)y_i \ge \theta a + (1 - \theta)a = a$
- Similarly, $θx_i + (1 θ)y_i ≤ b$ Therefore θx + (1 θ)y ∈ F

15781 Fall 2016: Lecture 13

INTERSECTION OF CONVEX SETS

Intersection of convex sets • $\mathcal{F} = \bigcap_{i=1}^{m} C_i$ C_1, \dots, C_m are convex

Proof (by contradiction):

- Let's prove it first for two convex sets A and B.
- Let a and b be two points belonging to $C = A \cap B$ (and, therefore, to both A and B).
- Let's assume there is a third point c on the line between that a and b, such that $c \notin C$, meaning that C is not convex.
 - But, for the convexity of A, every point on the line a-b must be in A, and the same holds for $B \rightarrow c$ must be in C!
- For m intersecting sets the same reasoning can be applied in pairs

EXAMPLES OF (NON)CONVEX SETS

15781 Fall 2016: Lecture 13

EXAMPLES OF CONVEX SETS

- Poll 1: Which of the following sets are convex:
 - 1. $\mathcal{F} = \bigcup_{i=1}^{m} C_i$ where C_1, \dots, C_m are convex 2. $\mathcal{F} = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{b} \}$ where $A \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^m$
 - 3. Both
 - 4. Neither

15781 Fall 2016: Lecture 13

LINEAR INEQUALITIES

Convex (obvious by geometrical considerations): Two points x and y in \mathcal{F} : $ax \leq b$, $ay \leq b$ $\theta x + (1 - \theta)y \in \mathcal{F}$? $\rightarrow \theta x + (1 - \theta)y \leq b/a$ $\theta x + (1 - \theta)y \leq \theta(\frac{b}{a}) + (1 - \theta)(\frac{b}{a}) = b/a$

15781 Fall 2016: Lecture 13

SYSTEMS OF LINEAR INEQUALITIES

- Every half-space inequality defines a convex set
- Their intersection is convex

15781 Fall 2016: Lecture 13

CONVEX FUNCTIONS

A function $f: \mathbb{R}^n \to \mathbb{R}$ is **convex** if for any $x, y \in \mathbb{R}^n$ and $\lambda \in [0,1]$

 $f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$

The graph of f is always below (or on) the line segment $\lambda f(\boldsymbol{x}) + (1-\lambda)f(\boldsymbol{y})$ connecting $(\boldsymbol{x}, f(\boldsymbol{x}))$ to $(\boldsymbol{y}, f(\boldsymbol{y}))$

The line interpolation between any two points in the domain, always over estimates the value of the function

For $f \colon \mathbb{R} \to \mathbb{R}$, this equals to f'' > 0

• Exponential: $f(x) = e^{ax}$

 $\circ \quad f^{\prime\prime}(x)=a^2e^{ax}\geq 0 \text{ for all } x\in \mathbb{R}$

• Euclidean (L2) norm: $f(\mathbf{x}) = ||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^{n} (x_i)^2}$

$$\|\theta x + (1-\theta)y\|_{2} \le \|\theta x\|_{2} + \|(1-\theta)y\|_{2} \\ = \theta \|x\|_{2} + (1-\theta)\|y\|_{2}$$

• If $f(\mathbf{y})$ is convex in \mathbf{y} , $f(A\mathbf{x} - \mathbf{b})$ is convex in \mathbf{x}

Affine transformation

• Sublevel sets (isolines): If f is convex,

 $\{x \in \mathbb{R}^n : f(x) \le c\}$ is a convex set

 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \leq \lambda c + (1 - \lambda)c = c$

• Poll 2: Which functions are convex?

1.
$$f(\mathbf{x}) = \sum_{i=1}^{m} a_i f_i(\mathbf{x})$$
 where f_i is convex and $a_i \ge 0$ for $i = 1, ..., m$

2.
$$g(\mathbf{x}) = \sqrt{\sum_{i=1}^{n} x_i} \text{ for } \mathbf{x} \ge 0$$

4. Neither

15781 Fall 2016: Lecture 13

• Weber point in n dimensions:

$$\min_{x^*} \sum_{i=1}^m \|x^* - x^{(i)}\|_2$$

- where $x^* \in \mathbb{R}^n$ is optimization variable and $x^{(1)}, \dots, x^{(m)}$ are problem data
- A convex optimization problem (why?) Affine transformation over a convex function (Euclidean

norm) + Linear combination which is also convex

- Linear programming: $\min_{x} c^{T} x$ s.t. Ax = a Bx < b
 - where $\boldsymbol{x} \in \mathbb{R}^{n}$ is optimization variable, and $\boldsymbol{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^{m}, B \in \mathbb{R}^{k \times n},$ $\boldsymbol{b} \in \mathbb{R}^{k}$ are problem data
- A convex optimization problem (why?)

GLOBAL AND LOCAL OPTIMALITY

- A point $x \in \mathbb{R}^n$ is globally optimal (global minimum) if $x \in \mathcal{F}$ and for all $y \in \mathcal{F}$, $f(x) \leq f(y)$
- A point $x \in \mathbb{R}^n$ is locally optimal if $x \in \mathcal{F}$ and there exists R > 0 small such that for all $y \in \mathcal{F}$ with $||x - y||_2 \le R$, $f(x) \le f(y)$
- Theorem: For a convex optimization problem, all locally optimal points are globally optimal (one, or infinite global optima)

PROOF OF THEOREM

- Suppose \boldsymbol{x} is locally optimal for some R, but not globally optimal
- There is y such that f(y) < f(x)
- Define

$$z = \theta x + (1 - \theta)y$$
for $\theta = 1 - \frac{R}{2\|x - y\|_2}$

15781 Fall 2016: Lecture 13

PROOF OF THEOREM

• Then:

• \mathbf{z} is feasible (for small enough R)

• $f(\mathbf{z}) = f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$ $< \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{x}) = f(\mathbf{x})$

•
$$\|\mathbf{x} - \mathbf{z}\|_2 = \left\|\frac{R}{2\|\mathbf{x} - \mathbf{y}\|_2}(\mathbf{x} - \mathbf{y})\right\|_2 = \frac{R}{2} < R$$

it's inside thee R ball!

• Therefore, \boldsymbol{x} is not locally optimal, contradicting our assumption \blacksquare

15781 Fall 2016: Lecture 13

MAXIMA OF CONVEX FUNCTIONS

On the frontier of the domain

How could this theorem help us in solving convex optimization problems?

15781 Fall 2016: Lecture 13

REMINDER: HILL-CLIMBING SEARCH

SOLVING CONVEX PROBLEMS

- Convex optimization problems can be solved in **polynomial time**
- For unconstrained problems, use gradient descent
- Constrained problems require a **projection operator** that, given \boldsymbol{x} , returns the "closest" $\boldsymbol{y} \in \mathcal{F}$

15781 Fall 2016: Lecture 13

SOLVING CONVEX PROBLEMS

- There are a wide range of tools that can take optimization problems in "natural" forms and compute a solution
- Examples include: CVX (MATLAB), YALMIP (MATLAB), AMPL (custom language), GAMS (custom language), cvxpy (Python)

SOLVING CONVEX PROBLEMS

 π

Given
$$\boldsymbol{a}^{(i)} \in \mathbb{R}^2$$
 for $i = 1, \dots, m$,

$$\min_{\boldsymbol{x}} \sum_{i=1}^m \left\| \boldsymbol{x} - \boldsymbol{a}^{(i)} \right\|_2 \text{ s.t. } x_1 + x_2 = 0$$

Constrained Weber Point

import cvxpy as cp
import numpy as np

AMPL: A SET OF SOLVERS + NICE MODELING LANGUAGE

set ORIG; # origins set DEST; # destinations				
set LINKS within {ORIG, DEST};				
<pre>param supply {ORIG} >= 0; # amounts available at origins param demand {DEST} >= 0; # amounts required at destinations</pre>				
<pre>check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];</pre>				
<pre>param cost {LINKS} >= 0; # shipment costs per unit var Trans {LINKS} >= 0; # units to be shipped</pre>				
<pre>minimize Total_Cost: sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];</pre>				
<pre>subject to Supply {i in ORIG}: sum {(i,j) in LINKS} Trans[i,j] = supply[i];</pre>				
<pre>subject to Demand {j in DEST}: sum {(i,j) in LINKS} Trans[i,j] = demand[j];</pre>				

15781 Fall 2016: Lecture 13

SUMMARY

- Terminology:
 - Convex optimization problem
 - Convex set
 - Convex function
 - Local and global optimum
- Big ideas:
 - In convex problems, every locally optimal solution is globally optimal!

