CMU 15-781

 Lecture 13:Convex Optimization

Teacher:
Gianni A. Di Caro

Optimization Problems

- Casting AI problems as optimization problems has been one of the primary trends of the last 15 years
- A seemingly remarkable fact:

	Search problems	Optimization problems
Variable type	Discrete	Continuous
\# solutions	Finite	Infinite
Complexity	Exponential	Polynomial (Convex class)

Formal definition

- Optimization problems are of the form $\min _{x} f(\boldsymbol{x})$
x such that $\boldsymbol{x} \in \mathcal{F}$
- $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is the objective function
- $\boldsymbol{x} \in \mathbb{R}^{n}$ is the optimization vector variable
- $\mathcal{F} \subseteq \mathbb{R}^{n}$ is the feasible set (constraints)
- $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ is an optimal solution (global minimum) if $\boldsymbol{x}^{*} \in \mathcal{F}$ and $f\left(\boldsymbol{x}^{*}\right) \leq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in \mathcal{F}$
- Mathematical programming problem

Properties

- Given an optimization problem:

$$
\begin{aligned}
& \min _{x} f(x) \\
& \text { such that } x \in \mathcal{F}
\end{aligned}
$$

- $\min _{\boldsymbol{x}} f(\boldsymbol{x})$ is equivalent to $\max -f(\boldsymbol{x})$
- If $\mathcal{F}=\emptyset$ the problem has no solution (unfeasible)
- If \mathcal{F} is an open set, only the $\inf (\sup)$ is guaranteed but not min (max)
- The problem is unbounded if $f \rightarrow-\infty$

Unconstrained 1D Example cases

Unconstrained 3D Example cases

15781 Fall 2016: Lecture 13
Carnegie Mellon University

(Constrained) Example cases of Mathematical Programming

Linear
$\min _{\vec{x}} 2 x_{1}+x_{2}-4 x_{3}$
s.t. $\quad x_{1}+x_{2} \leqslant 5$

$$
x_{1}, x_{2}, x_{3} \geqslant 0
$$

$\min _{\vec{x}} 2 x_{1}+x_{2}-4 x_{3}^{3}$
s.t. $\quad x_{1}+\sqrt{x_{2}} \leqslant 5$ $x_{1}, x_{2}, x_{3} \geqslant 0$

Convex

$$
\begin{aligned}
& 2 x_{1}+x_{2}-4 x_{3} \\
& x_{1}^{4}+x_{2} \leqslant 5 \\
& x_{1}+x_{3} \geqslant 0 \\
& \\
& 2 x_{1}+x_{2}+4 x_{3}^{3} \\
& x_{1}+\sin \left(x_{2}\right) \leqslant 5 \\
& x_{1}+x_{3} \geqslant 0
\end{aligned}
$$

Non-convex

Reals

$$
\begin{aligned}
& 2 x_{1}+x_{2}-4 x_{3} \\
& x_{1}+x_{2} \leqslant 5 \\
& x_{1}, x_{2}, x_{3} \geqslant 0 \\
& \\
& 2 x_{1}+x_{2}-4 x_{3} \\
& x_{1}+x_{2} \leqslant 5 \\
& x_{1}, x_{2}, x_{3} \in \mathbb{Z}^{+}
\end{aligned}
$$

Zeals

Certainty

$$
\begin{aligned}
& 2 x_{1}+x_{2}-4 x_{3} \\
& x_{1}+x_{2} \leqslant 5 \\
& x_{1}, x_{2}, x_{3} \in\{0,1\} \\
& \\
& 2 x_{1}+x_{2}-\mathbb{E}_{\omega} Q\left(x_{3}, \omega\right) \\
& x_{1}+x_{2} \leqslant 5 \\
& x_{1}, x_{2}, x_{3} 0, \omega \sim U[0,10]
\end{aligned}
$$

Stochastic

Example of constrained MP

$$
\begin{array}{ll}
\min _{\vec{x}} & z=x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & x_{1}-2 x_{2}+6 \geqslant 0 \\
& -x_{1}^{2}+x_{2}-1 \geqslant 0 \\
& x_{1}, x_{2} \geqslant 0
\end{array}
$$

ExAMPLE: LEAST-SQUARES FITTING

- Given $\left(x_{i}, y_{i}\right)$ for
$i=1, \ldots, m$, find $h(x)=a x+b$ that optimizes
$\min _{a, b} \sum_{i=1}^{m}\left(a x_{i}+b-y_{i}\right)^{2}$
(a is slope, b is
 intercept)

Example: Weber point

- Given $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, m$, find the point $\left(x^{*}, y^{*}\right)$ that minimizes the sum of Euclidean distances:
$\min _{x^{*}, y^{*}} \sum_{i=1}^{m} \sqrt{\left(x^{*}-x_{i}\right)^{2}+\left(y^{*}-y_{i}\right)^{2}}$

- Many modifications, e.g., might want $a \leq x^{*} \leq b, c \leq y^{*} \leq d$

Machine LEARNing

- Many machine learning problems can be described as minimizing a loss function

$$
\min _{\alpha \in \mathbb{R}^{n}} \sum_{i=1}^{m} L\left(\sum_{j=1}^{n} \alpha_{j} x_{j}^{(i)}, y^{(i)}\right)
$$

- $\boldsymbol{x}^{(i)} \in \mathbb{R}^{n}$ are input features
- $y^{(i)} \in \mathbb{R}$ (regression) or $y^{(i)} \in\{0,1\}$ (classification) are outputs
- $\boldsymbol{\alpha} \in \mathbb{R}^{n}$ are model parameters

The optimization universe

Convex optimization

- A convex optimization problem is a special case of a general optimization problem $\min f(x)$
x
such that $x \in \mathcal{F}$
where the target function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a convex function, and the feasible region \mathcal{F} is a convex set

Convex sets

- A set $\mathcal{F} \subseteq \mathbb{R}^{n}$ is convex if for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{F}$ and $\theta \in$ $[0,1], \theta \boldsymbol{x}+(1-\theta) \boldsymbol{y} \in \mathcal{F}$
- A set is convex if, given two points in it, it contains all their possible linear (convex) combinations

Convex set

Nonconvex set

Convex combination

- Given k points $\boldsymbol{P}_{i} \in \mathbb{R}^{n}, i=1, \ldots, k$, a point $z \in \mathbb{R}^{n}$ is a convex combination of the points P_{i} if:

$$
z=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{P}_{i}, \quad \lambda_{i} \geq 0 \forall i, \quad \sum_{i=1}^{k} \lambda_{i}=1
$$

- If $k=2 \quad \rightarrow z=\lambda \boldsymbol{P}_{1}+(1-\lambda) \boldsymbol{P}_{2}, \quad \lambda_{1}=\lambda, \quad \lambda_{2}=(1-\lambda)$
- Example: $k=2, \quad \boldsymbol{P}_{1}=(2,1), \boldsymbol{P}_{2}=(6,3), \lambda=0.75 \rightarrow z=(3,1.5)$
- Example: $k=3, \quad \boldsymbol{P}_{1}=(0,0), \boldsymbol{P}_{2}=(1,0), \boldsymbol{P}_{3}=(0,1), \lambda_{i}=\{0.5,0.2,0.3\} \rightarrow$ $z=(0.2,0.3)$

Convex Hull

- Given a set P of k points of $\mathbb{R}^{n}, P=\left\{\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{k}\right\}$, the smallest convex set, $\operatorname{conv}(P)$, that includes P is the convex hull, $P \subseteq \operatorname{conv}(P)$
- $\operatorname{conv}(P)$ is the set of all convex combinations of the points in P :

$$
\operatorname{conv}(P)=\left\{z \in \mathbb{R}^{n}: z=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{P}_{i}, \quad \forall \lambda_{i}, i=1, \ldots, k \mid \lambda_{i} \geq 0 \wedge \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

Examples of convex sets

- $\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \forall i=1, \ldots, n, a \leq x_{i} \leq b\right\}$
- Proof:
- Let $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{F}$, and $\theta \in[0,1]$
- For all $i=1, \ldots, n$,

$$
\begin{aligned}
& a \leq x_{i} \text { and } a \leq y_{i}, \text { so } \\
& \theta x_{i}+(1-\theta) y_{i} \geq \theta a+(1-\theta) a=a
\end{aligned}
$$

- Similarly, $\theta x_{i}+(1-\theta) y_{i} \leq b$

- Therefore $\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y} \in \mathcal{F}$

Intersection of convex sets

Proof (by contradiction):

- Let's prove it first for two convex sets A and B.
- Let a and b be two points belonging to $\mathrm{C}=\mathrm{A} \cap \mathrm{B}$ (and, therefore, to both A and B).
- Let's assume there is a third point c on the line between that a and b, such that $c \notin \mathrm{C}$, meaning that C is not convex.
Intersection of convex sets - But, for the convexity of A, every point

$$
\mathcal{F}=\bigcap_{i=1}^{m} C_{i}
$$

C_{1}, \ldots, C_{m} are convex on the line a - b must be in A, and the same holds for $\mathrm{B} \rightarrow \mathrm{c}$ must be in C !

- For m intersecting sets the same reasoning can be applied in pairs

Examples of (NON)CONVEX SETS

15781 Fall 2016: Lecture 13
Carnegie Mellon University 19

Examples of convex sets

- Poll 1: Which of the following sets are convex:

1. $\mathcal{F}=\mathrm{U}_{i=1}^{m} C_{i}$ where C_{1}, \ldots, C_{m} are convex
2. $\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A \boldsymbol{x}=\boldsymbol{b}\right\}$ where $A \in \mathbb{R}^{m \times n}$, $\boldsymbol{b} \in \mathbb{R}^{m}$
3. Both
4. Neither

LINEAR INEQUALITIES

$$
\begin{gathered}
\text { Linear inequalities } \\
\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A T \boldsymbol{x} \leq b\right\} \\
A \in \mathbb{R}^{n}, b \in \mathbb{R}
\end{gathered}
$$

Half-space (\leq closed,$<$ open)

Convex (obvious by geometrical considerations):
Two points x and y in $\mathcal{F}: \mathrm{a} x \leq \mathrm{b}$, a $y \leq \mathrm{b}$
$\theta x+(1-\theta) y \in \mathcal{F} ? \rightarrow \theta x+(1-\theta) y \leq \mathrm{b} / \mathrm{a}$
$\theta x+(1-\theta) y \leq \theta\left(\frac{b}{a}\right)+(1-\theta)\left(\frac{b}{a}\right)=\mathrm{b} / \mathrm{a}$

Systems of linear inequalities

Linear inequalities

Polytopes

Polyhedron $\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: A \boldsymbol{x} \leq \boldsymbol{b}\right\}$
$A \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^{m}$

- Every half-space inequality defines a convex set
- Their intersection is convex

Convex functions

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$

$$
f(\lambda \boldsymbol{x}+(1-\lambda) \boldsymbol{y}) \leq \lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})
$$

The graph of f is always below (or on) the line segment $\lambda f(\boldsymbol{x})+(1-\lambda) f(\boldsymbol{y})$ connecting $(\boldsymbol{x}, f(\boldsymbol{x}))$ to $(\boldsymbol{y}, f(\boldsymbol{y}))$

The line interpolation between any two points in the domain, always over estimates the value of the function

For $f: \mathbb{R} \rightarrow \mathbb{R}$, this equals to $f^{\prime \prime}>0$

EXAMPLES OF CONVEX PROBLEMS

- Exponential: $f(x)=e^{a x}$

$$
\text { - } f^{\prime \prime}(x)=a^{2} e^{a x} \geq 0 \text { for all } x \in \mathbb{R}
$$

- Euclidean (L2) norm: $f(\boldsymbol{x})=\|x\|_{2}=\sqrt{\sum_{i=1}^{n}\left(x_{i}\right)^{2}}$

$$
\begin{aligned}
\circ\|\boldsymbol{x}+(1-\theta) \boldsymbol{y}\|_{2} & \leq\|\theta \boldsymbol{x}\|_{2}+\|(1-\theta) \boldsymbol{y}\|_{2} \\
& =\theta\|\boldsymbol{x}\|_{2}+(1-\theta)\|\boldsymbol{y}\|_{2}
\end{aligned}
$$

- If $f(\boldsymbol{y})$ is convex in $\boldsymbol{y}, f(A \boldsymbol{x}-\boldsymbol{b})$ is convex in \boldsymbol{x} Affine transformation

Examples of convex problems

- Sublevel sets (isolines): If f is convex,
$\left\{x \in \mathbb{R}^{n}: f(\boldsymbol{x}) \leq c\right\}$ is a convex set

$$
\mathrm{f}(\lambda \mathrm{x}+(1-\lambda) \mathrm{y}) \leq \lambda \mathrm{f}(\mathrm{x})+(1-\lambda) \mathrm{f}(\mathrm{y}) \leq \lambda \mathrm{c}+(1-\lambda) \mathrm{c}=\mathrm{c}
$$

EXAMPLES OF CONVEX PROBLEMS

- Poll 2: Which functions are convex?

1. $f(\boldsymbol{x})=\sum_{i=1}^{m} a_{i} f_{i}(\boldsymbol{x})$ where f_{i} is convex and $a_{i} \geq 0$ for $i=1, \ldots, m$
2. $g(\boldsymbol{x})=\sqrt{\sum_{i=1}^{n} x_{i}}$ for $\boldsymbol{x} \geq 0$
3. Both
4. Neither

EXAMPLES OF CONVEX PROBLEMS

- Weber point in n dimensions: $\min _{\boldsymbol{x}^{*}} \sum_{i=1}^{m}\left\|\boldsymbol{x}^{*}-\boldsymbol{x}^{(i)}\right\|_{2}$ where $\boldsymbol{x}^{*} \in \mathbb{R}^{n}$ is optimization variable and $\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}$ are problem data
- A convex optimization problem (why?) Affine transformation over a convex function (Euclidean norm) + Linear combination which is also convex

EXAMPLES OF CONVEX PROBLEMS

- Linear programming:

$$
\min \boldsymbol{c}^{T} \boldsymbol{x}
$$

$$
\boldsymbol{x}
$$

$$
\text { s.t. } A \boldsymbol{x}=\boldsymbol{a}
$$

$$
B \boldsymbol{x} \leq \boldsymbol{b}
$$

where $\boldsymbol{x} \in \mathbb{R}^{n}$ is optimization variable, and
$\boldsymbol{c} \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^{m}, B \in \mathbb{R}^{k \times n}$,
$\boldsymbol{b} \in \mathbb{R}^{k}$ are problem data

- A convex optimization problem (why?)

GLOBAL AND LOCAL OPTIMALITY

- A point $\boldsymbol{x} \in \mathbb{R}^{n}$ is globally optimal (global minimum) if $\boldsymbol{x} \in \mathcal{F}$ and for all $\boldsymbol{y} \in \mathcal{F}, f(\boldsymbol{x}) \leq f(\boldsymbol{y})$
- A point $\boldsymbol{x} \in \mathbb{R}^{n}$ is locally optimal if $\boldsymbol{x} \in \mathcal{F}$ and there exists $R>0$ small such that for all $\boldsymbol{y} \in \mathcal{F}$ with $\|\boldsymbol{x}-\boldsymbol{y}\|_{2} \leq R, f(\boldsymbol{x}) \leq f(\boldsymbol{y})$
- Theorem: For a convex optimization problem, all locally optimal points are globally optimal (one, or infinite global optima)

PROOF OF THEOREM

- Suppose \boldsymbol{x} is locally optimal for some R, but not globally optimal
- There is \boldsymbol{y} such that $f(\boldsymbol{y})<f(\boldsymbol{x})$
- Define

$$
\begin{array}{r}
\boldsymbol{z}=\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y} \\
\text { for } \theta=1-\frac{R}{2\|\boldsymbol{x}-\boldsymbol{y}\|_{2}}
\end{array}
$$

PROOF OF THEOREM

- Then:
- $\quad \mathbf{z}$ is feasible (for small enough R)
- $f(\mathbf{z})=f(\theta \boldsymbol{x}+(1-\theta) \boldsymbol{y}) \leq \theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{y})$
$<\theta f(\boldsymbol{x})+(1-\theta) f(\boldsymbol{x})=f(\boldsymbol{x})$
- $\|\boldsymbol{x}-\boldsymbol{z}\|_{2}=\left\|\frac{R}{2\|x-y\|_{2}}(\boldsymbol{x}-\boldsymbol{y})\right\|_{2}=\frac{R}{2}<R$
it's inside thee R ball!
- Therefore, \boldsymbol{x} is not locally optimal, contradicting our assumption ■

MAXIMA OF CONVEX FUNCTIONS

On the frontier of the domain

15781 Fall 2016: Lecture 13
Carnegie Mellon University 33

REMINDER: HILL-CLIMBING SEARCH

Solving convex problems

- Convex optimization problems can be solved in polynomial time
- For unconstrained problems, use gradient descent
- Constrained problems require a projection operator that, given \boldsymbol{x}, returns the "closest" $\boldsymbol{y} \in \mathcal{F}$

Solving convex problems

- There are a wide range of tools that can take optimization problems in "natural" forms and compute a solution
- Examples include: CVX (MATLAB), YALMIP (MATLAB), AMPL (custom language), GAMS (custom language), cvxpy (Python)

Solving convex problems

π

$$
\begin{aligned}
& \operatorname{Given}_{m} \boldsymbol{a}^{(i)} \in \mathbb{R}^{2} \text { for } i=1, \ldots, m, \\
& \min _{\boldsymbol{x}} \sum_{i=1}^{m}\left\|\boldsymbol{x}-\boldsymbol{a}^{(i)}\right\|_{2} \text { s.t. } x_{1}+x_{2}=0
\end{aligned}
$$

Constrained
Weber
Point

```
import cvxpy as cp
import numpy as np
n = 2
m}=1
A = np.random.randn(m,n)
x = cp.Variable(n)
f = sum([cp.norm(x - A[i,:],2) for i in range(m)])
constraints = [sum(x) == 0]
result = cp.Problem(cp.Minimize(f), constraints).solve()
print x.value
```


AMPL: A SET OF SOLVERS + NICE MODELING LANGUAGE

AMPL
 a mopting tameungt for matmimaticat phogramming


```
set ORIG; # origins
set DEST; # destinations
set LINKS within {ORIG,DEST};
param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST} >= 0; # amounts required at destinations
    check: sum {i in ORIG} supply[i] = sum {j in DEST} demand[j];
param cost {LINKS} >= 0; # shipment costs per unit
var Trans {LINKS} >= 0; # units to be shipped
minimize Total_Cost:
    sum {(i,j) in LINKS} cost[i,j] * Trans[i,j];
subject to Supply {i in ORIG}:
    sum {(i,j) in LINKS} Trans[i,j] = supply[i];
subject to Demand {j in DEST}:
    sum {(i,j) in LINKS} Trans[i,j] = demand[j];
```


Summary

- Terminology:
- Convex optimization problem
- Convex set
- Convex function
- Local and global optimum
- Big ideas:
- In convex problems, every locally optimal solution is globally optimal!

