CMU 15-781

Lecture 11:

Markov Decision Processes II

Teacher:
Gianni A. Di Caro

Recap: Defining MDPs

- Markov decision processes:
- Set of states S
- Start state s_{0}
- Set of actions A
- Transitions $\mathbf{P}\left(s^{\prime} \mid s, a\right)$ (or $\mathbf{T}\left(s, a, s^{\prime}\right)$)
- Rewards $R\left(s, a, s^{\prime}\right)$ (and discount γ)
- MDP quantities so far:
- Policy $\pi=$ Choice of action for each state
- Utility/Value = sum of (discounted) rewards
- Optimal policy $\pi^{*}=$ Best choice, that max Utility

Utility and Policy selection

- Utility of a state sequence (its return): sum of the discounted rewards obtained during the state sequence

$$
U\left(s_{t}\right)=U\left(\left[s_{t+1}, \ldots, s_{\infty}\right]\right)=\sum_{k=0}^{\infty} \gamma^{k} R\left(s_{t+k+1}\right)
$$

- Utility/return of the state sequence from current state s_{t}

$$
U\left(s_{t}\right)=U\left(\left[s_{t+1}, \ldots, s_{\infty}\right]\right)=\sum_{k=0}^{\infty} \gamma^{t} R\left(s_{t+k+1}\right)
$$

- The rational agent tries to select actions so that the sum of the discounted rewards it receives over the future is maximized (i.e., its utility is maximized)

Utility and Policy selection

- State/reward sequences depend on applied policy π, and effects of probabilistic transitions $\mathrm{P}\left(\mathrm{s}^{\prime} \mid \mathrm{s}, \pi(\mathrm{s})\right)$ on actions
- \rightarrow Rational agent aims to find the action policy π^{*} that maximizes the expected value of the utility for all $s_{0} \in S$

Value function and Q-Function

- The value $\boldsymbol{V}^{\pi}(s)$ of a state s under the policy π is the expected value of its return, the utility of all state sequences starting in s and applying π

$$
V^{\pi}(s)=E\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \mid s_{0}=s\right]
$$

State
Value-function

- The value $Q^{\pi}(s, a)$ of taking an action a in state s under policy π is the expected return starting from s, taking action a, and thereafter following π :

$$
Q^{\pi}(s, a)=E\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t}\right) \mid s_{0}=s, a_{0}=a\right] \text { Action } \text { Value-function }
$$

Value function

$$
\begin{aligned}
V^{\pi}(s) & =E\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(s_{t+1}\right) \mid s_{0}=s\right] \\
& \rightarrow E\left[\sum_{k=0}^{\infty} \gamma^{k} R\left(s_{t+k+1}\right) \mid s_{t}=s\right] \\
& =E\left[R\left(s_{t+1}\right)+\gamma R\left(s_{t+2}\right)+\gamma^{2} R\left(s_{t+3}\right)+\ldots\right] \\
& =E\left[R\left(s_{t+1}\right)+\gamma \sum_{k=0}^{\infty} \gamma^{k} R\left(s_{k+t+2}\right) \mid s_{t}=s\right] \\
& =E\left[R\left(s_{t+1}\right)+\gamma V^{\pi}\left(s_{t+1}\right) \mid s_{t}=s\right]
\end{aligned}
$$

BELLMAN EQUATION FOR VALUE FUNCTION

$$
\begin{aligned}
V^{\pi}(s) & =E\left[R\left(s_{t+1}\right)+\gamma V^{\pi}\left(s_{t+1}\right) \mid s_{t}=s\right] \\
& =\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \quad \forall s \in S
\end{aligned}
$$

- Expected immediate reward (short-term) for taking action $\pi(s)$ prescribed by π for state $s+$ Expected future reward (long-term) get after taking that action from that state and following π

BELLMAN EQUATION FOR VALUE FUNCTION

State s

$$
V^{\pi}(s)=\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \quad \forall s \in S
$$

Backup diagram

- Additivity of utility +
- Markov property
- Relation between the value of a state and that of its neighbors
- Recursive state equations that need to be mutually consistent

BELLMAN EQUATION FOR Value function

$$
V^{\pi}(s)=\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \quad \forall s \in S
$$

- How do we find V values for all states?
- $|S|$ linear equations in $|S|$ unknowns

Values for the grid world states

3	0.812	0.868	0.918
0.762		0.660	$\boxed{+1}$
1	0.705	0.655	0.611

$$
\begin{aligned}
& \gamma=1, \mathrm{R}(\mathrm{~s})=-00.4
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \pi \text { is also optimal) }
\end{aligned}
$$

A golf club example

- Value of a state: negative of the number of strokes to the hole from that location
- Actions: which club to use $\{$ putter, driver $\}$
- Policy: only use the putter

Optimal state and ACTION VALUE FUNCTIONS

- $V^{*}(s)=$ Highest possible expected utility from s

$$
V^{*}(s)=\max _{\pi} V^{\pi}(s) \quad \forall s \in S
$$

- Optimal action-value function:

$$
Q^{*}(s, a)=\max _{\pi} Q^{\pi}(s, a) \quad \forall s \in S, a \in A
$$

Optimal Action-Value example

$q_{*}(s$, driver $)$

-2

- Optimal action-values for choosing club=driver, and afterward select either the driver or the putter, whichever is better.

BELLMAN OPTIMALITY EQUATIONS FOR V

- The value $V^{*}(s)=V^{\pi^{*}}(s)$ of a state s under the optimal policy π^{*} must equal the expected utility for the best action from that state \rightarrow

$$
\begin{aligned}
V^{*}(s) & =\max _{a \in A(s)} Q^{\pi^{*}}(s, a) \\
& =\max _{a \in A(s)} E\left[R\left(s_{t+1}\right)+\gamma V^{*}\left(s_{t+1}\right) \mid s_{t}=s, a_{t}=a\right] \\
& =\max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman optimality equations for V

$V^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \quad \forall s \in S$

- $|\mathrm{S}|$ non-linear equations in $|\mathrm{S}|$ unknowns
- The vector \boldsymbol{V}^{*} is the unique solution to the system

Carnegie Mellon University 15

BELLMAN OPTIMALITY EQUATIONS FOR Q

$$
\begin{aligned}
& Q^{*}(s, a)= E\left[R\left(s_{t+1}\right)+\gamma \max _{a^{\prime}} Q^{*}\left(s_{t+1}, a^{\prime}\right) \mid s_{t}=s, a_{t}=a\right] \\
&= \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right] \\
& \forall s \in S, a \in A
\end{aligned}
$$

- $|\mathrm{S}| \times|\mathrm{A}(\mathrm{s})|$ non-linear equations
- The vector Q^{*} is the unique solution to the system

Carnegie Mellon University 16

Finding the optimal policy

- If we have computed $V^{*} \rightarrow$
$\pi^{*}(s)=\arg \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]$
It's one-step ahead search
\rightarrow Greedy policy with respect to V^{*}
- If we have computed $\boldsymbol{Q}^{*} \rightarrow$

$$
\pi^{*}(s)=\arg \max _{a \in A(s)} Q^{*}(s, a)
$$

$$
=\arg _{a \in A(s)} \max _{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)\right]
$$

Optimal V* FOR The grid world

$V^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]^{3}$
For our grid world (find that up is the best), Let's omit the rewards, assuming $\mathrm{R}=0$:

- $\mathrm{V}^{*}(1,1)=\gamma \max \{u, l, d, r\}[$

$$
\begin{array}{ll}
\left\{0.8 \mathrm{~V}^{*}(1,2)+0.1 \mathrm{~V}^{*}(2,1)+0.1 \mathrm{~V}^{*}(1,1)\right\}, & \text { up } \\
\left\{0.9 \mathrm{~V}^{*}(1,1)+0.1 \mathrm{~V}^{*}(1,2)\right\}, & \text { left } \\
\left\{0.9 \mathrm{~V}^{*}(1,1)+0.1 \mathrm{~V}^{*}(2,1)\right\}, & \text { down } \\
\left\{0.8 \mathrm{~V}^{*}(2,1)+0.1 \mathrm{~V}^{*}(1,2)+0.1 \mathrm{~V}^{*}(1,1)\right\} & \text { right }
\end{array}
$$

V^{*} FOR RECYCLING ROBOT

Two states $\{$ high, low $\}$

$$
\begin{aligned}
v_{*}(\mathrm{~h}) & =\max \left\{\begin{array}{l}
p(\mathrm{~h} \mid \mathrm{h}, \mathbf{s})\left[r(\mathrm{~h}, \mathbf{s}, \mathrm{~h})+\gamma v_{*}(\mathrm{~h})\right]+p(\mathrm{l} \mid \mathrm{h}, \mathbf{s})\left[r(\mathrm{~h}, \mathbf{s}, 1)+\gamma v_{*}(\mathrm{l})\right], \\
p(\mathrm{~h} \mid \mathrm{h}, \mathrm{w})\left[r(\mathrm{~h}, \mathrm{w}, \mathrm{~h})+\gamma v_{*}(\mathrm{~h})\right]+p(1 \mid \mathrm{h}, \mathrm{w})\left[(\mathrm{h}, \mathbf{w}, \mathrm{l})+\gamma v_{*}(1)\right]
\end{array}\right\} \\
& =\max \left\{\begin{array}{l}
\alpha\left[\left[_{\mathbf{s}}+\gamma v_{*}(\mathrm{~h})\right]+(1-\alpha)\left[r_{\mathbf{s}}+\gamma v_{*}(1)\right],\right. \\
{\left[r_{\mathbf{w}}+\gamma v_{*}(\mathrm{~h})\right]+\left[r_{\mathbf{w}}+\gamma v_{*}(1)\right]}
\end{array}\right\} \\
& =\max \left\{\begin{array}{l}
r_{\mathbf{s}}+\gamma\left[\alpha v_{*}(\mathrm{~h})+(1-\alpha) v_{*}(1)\right], \\
r_{\mathbf{w}}+\gamma v_{*}(\mathrm{~h})
\end{array}\right\} . \\
v_{*}(1) & =\max \left\{\begin{array}{l}
\beta r_{\mathbf{s}}-3(1-\beta)+\gamma\left[(1-\beta) v_{*}(\mathrm{~h})+\beta v_{*}(1)\right] \\
r_{\mathbf{w}}+\gamma v_{*}(\mathrm{l}), \\
\gamma v_{*}(\mathrm{~h})
\end{array}\right\}
\end{aligned}
$$

How do we solve the Bellman OPTIMALITY EQUATIONS?

$$
V^{*}(s)=\max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right] \quad \forall s \in S
$$

- $|\mathrm{S}|$ non-linear equations in $|\mathrm{S}|$ unknowns (because of max)
- Equations suggest an iterative, recursive update approach

$$
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right] \quad \forall s \in S
$$

State Backup: $\boldsymbol{V}_{\mathrm{k}+1}=\boldsymbol{B} \boldsymbol{V}_{\mathrm{k}}$

Value Iteration

1. Initialization:

Initialize arbitrarily $V(s) \forall s \in S$ (e.g., $V(s)=0$)
2. Value Iteration:

Repeat
$\Delta \leftarrow 0$
$k \leftarrow 0$
Foreach $s \in S$

$$
\begin{aligned}
& v \leftarrow V(s) \\
& V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
\end{aligned}
$$

Bellman update / Backup operator

$$
\Delta \leftarrow \max (\Delta,|v-V(s)|)
$$

$$
k \leftarrow k+1
$$

Until $\Delta<\theta$ (small positive number) estimation error (see later)
Output a deterministic policy $\pi \approx \pi^{*}$, such that

$$
\pi(s)=\arg \max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right]
$$

Value Iteration on Grid World

$\mathrm{R}(\mathrm{s})=0$
everywhere except at the terminal states

$$
\boldsymbol{V}_{\mathrm{k}}(\mathrm{~s})=0 \text { at } k=0
$$

$$
\begin{aligned}
& V_{k+1}([i, j]) \leftarrow \max [] \\
& \max \left[\left\{p([i+1, j] \mid[i, j], u)\left(R([i+1, j])+\gamma V_{k}([i+1, j])\right)+p([i-1, j] \mid[i, j], u)\left(R([i-1, j])+\gamma V_{k}([i-1, j])\right)+\right.\right. \\
& p([i, j+1] \mid[i, j], u)\left(R([i, j+1])+\gamma V_{k}([i, j+1])\right)+p([i, j-1] \mid[i, j], u)\left(R([i, j-1])+\gamma V_{k}([i, j-1])\right)+ \\
& \left.p([i, j] \mid[i, j], u)\left(R([i, j])+\gamma V_{k}([i, j])\right)\right\}_{u p}, \\
& \left\{p([i+1, j] \mid[i, j], d)\left(R([i+1, j])+\gamma V_{k}([i+1, j])\right)+\right. \\
& p([i-1, j] \mid[i, j], d)\left(R([i-1, j])+\gamma V_{k}([i-1, j])\right)+p([i, j+1] \mid[i, j], d)\left(R([i, j+1])+\gamma V_{k}([i, j+1])\right)+ \\
& \left.p([i, j-1] \mid[i, j], d)\left(R([i, j-1])+\gamma V_{k}([i, j-1])\right)+p([i, j] \mid[i, j], d)\left(R([i, j])+\gamma V_{k}([i, j])\right)\right\}_{\text {down }}, \\
& \left\{p([i+1, j] \mid[i, j], r)\left(R([i+1, j])+\gamma V_{k}([i+1, j])\right)+\right. \\
& p([i-1, j] \mid[i, j], r)\left(R([i-1, j])+\gamma V_{k}([i-1, j])\right)+p([i, j+1] \mid[i, j], r)\left(R([i, j+1])+\gamma V_{k}([i, j+1])\right)+ \\
& \left.p([i, j-1] \mid[i, j], r)\left(R([i, j-1])+\gamma V_{k}([i, j-1])\right)+p([i, j] \mid[i, j], r)\left(R([i, j])+\gamma V_{k}([i, j])\right)\right\}_{r i g h t}, \\
& \left\{p([i+1, j] \mid[i, j], l)\left(R([i+1, j])+\gamma V_{k}([i+1, j])\right)+\right. \\
& p([i-1, j] \mid[i, j], l)\left(R([i-1, j])+\gamma V_{k}([i-1, j])\right)+p([i, j+1] \mid[i, j], l)\left(R([i, j+1])+\gamma V_{k}([i, j+1])\right)+ \\
& \left.\left.p([i, j-1] \mid[i, j], l)\left(R([i, j-1])+\gamma V_{k}([i, j-1])\right)+p([i, j] \mid[i, j], l)\left(R([i, j])+\gamma V_{k}([i, j])\right)\right\}_{l e f t}\right]
\end{aligned}
$$

Value Iteration on Grid World

$0.00 \vee$	$0.00 \vee$	$0.72 \vee$	1.00
$0.00 \vee$		0.00	-1.00
$0.00 \vee$	$0.00 \vee$	$0.00 \vee$	0.00

VALUES AFTER 2 ITERATIONS

VALUES AFTER 3 ITERATIONS

Value Iteration on Grid World

VALUES AFTER 4 ITERATIONS

0.51	0.72	0.84,	1.00
0.27		0.55	-1.00
	0.00	0.22	0.37
0.13			

VALUES AFTER 5 ITERATIONS

Value Iteration on Grid World

0.64	0.74 >	0.85	1.00
-		\triangle	
0.57		0.57	-1.00
-		-	
0.49	40.43	0.48	4 0.28

VALUES AFTER 100 ITERATIONS

VALUES AFTER 1000 ITERATIONS

Computational Cost for 1 Update of $V(S)$ For all S In Value ItERATION?

- For all states s

$$
\begin{gathered}
V_{k+1}(s) \leftarrow \max _{a \in A(s)} \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right] \\
|\mathbf{A}| \cdot|\mathbf{S}|^{2}
\end{gathered}
$$

Does Value Iteration converge?

- Yes, it does converge to a unique solution, \boldsymbol{V}^{*}
- It does because a backup operation \mathbf{B} is a contraction by a factor γ on the space of the state value vectors:
- If apply B to two different value functions, their max norm distance shrinks

$$
\max \text { norm: }\|\boldsymbol{V}\|=\max _{s \in S}|V(s)|
$$

$\left\|\boldsymbol{V}-\boldsymbol{V}^{\prime}\right\|=$ max difference between two corresponding states

$$
\Downarrow
$$

$$
\left\|\boldsymbol{B} \boldsymbol{V}_{k}-\boldsymbol{B} \boldsymbol{V}_{k}^{\prime}\right\| \leq \gamma\left\|\boldsymbol{V}_{k}-\boldsymbol{V}_{k}^{\prime}\right\|
$$

Bellman Operator is a Contraction

 $\left|\left|\mathrm{V}-\mathrm{V}^{\prime}\right|\right|=$ Infinity norm (find max difference over all states, e.g. $\max (\mathrm{s})\left|\mathrm{V}(\mathrm{s})-\mathrm{V}^{\prime}(\mathrm{s})\right|$$$
\left\|B V-B V^{\prime}\right\|=\left\|\max _{a}\left[R(s, a)+\gamma \sum_{s, \in S} p\left(s_{j} \mid s_{i}, a\right) V\left(s_{j}\right)\right]-\max _{a^{\prime}}\left[R\left(s, a^{\prime}\right)-\gamma \sum_{s_{j}, \in S} p\left(s_{j} \mid s_{i}, a^{\prime}\right) V^{\prime}\left(s_{j}\right)\right]\right\|
$$

$$
\leq \max _{a}\left\|\left[R(s, a)+\gamma \sum_{s_{j} \in S} p\left(s_{j} \mid s_{i}, a\right) V\left(s_{j}\right)-R(s, a)+\gamma \sum_{s_{j} \in S} p\left(s_{j} \mid s_{i}, a\right) V^{\prime}\left(s_{j}\right)\right]\right\|
$$

$$
\leq \gamma \max _{a}\left\|\left[\sum_{s_{j} \in S} p\left(s_{j} \mid s_{i}, a\right) V\left(s_{j}\right)-\sum_{s_{j} \in S} p\left(s_{j} \mid s_{i}, a\right) V^{\prime}\left(s_{j}\right)\right]\right\|
$$

$$
=\gamma \max _{a} \|\left[\sum_{s, j \in S} p\left(s_{j} \mid s_{i}, a\right)\left(V\left(s_{j}\right)-V^{\prime}\left(s_{j}\right)\right)\right]
$$

$$
\leq \gamma \max _{a, s_{i}} \sum_{s_{s, \in S}} p\left(s_{j} \mid s_{i}, a\right)\left|V\left(s_{j}\right)-V^{\prime}\left(s_{j}\right)\right|
$$

$$
\leq \gamma \max \sum_{a, s_{i}} \sum_{s_{j} \in S} p\left(s_{j} \mid s_{i}, a\right)\left\|V-V^{\prime}\right\|
$$

Holds for $\gamma<1$
$=\gamma\left\|V-V^{\prime}\right\|$

Properties of Contraction

- Only has 1 fixed point (the point reach if apply a contraction operator many times)
- If had two, then would not get closer when apply contraction function, violating definition of contraction
- When apply contraction function to any argument, value must get closer to fixed point
- Fixed point doesn't move
- Repeated function applications yield fixed point

Value Iteration Converges

- Value iteration converges to unique solution which is the optimal value function
- Proof: $\quad \lim _{k \rightarrow \infty} V_{k}=V^{*}$

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|B V_{k}-V^{*}\right\|_{\infty} \leq \gamma\left\|V_{k}-V^{*}\right\|_{\infty} \leq \ldots \\
& \leq \gamma^{k+1}\left\|V_{0}-V^{*}\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

Convergence rate?

- $\left\|\boldsymbol{V}_{\mathrm{k}}-\boldsymbol{V}^{*}\right\|=$ error in the estimate $\boldsymbol{V}_{\mathrm{k}}$, therefore by using the previous relation:

$$
\begin{aligned}
\left\|V_{k+1}-V^{*}\right\|_{\infty} & =\left\|B V_{k}-V *\right\|_{\infty} \leq \gamma\left\|V_{k}-V *\right\|_{\infty} \leq \ldots \\
& \leq \gamma^{k+1}\left\|V_{0}-V^{*}\right\|_{\infty} \rightarrow 0
\end{aligned}
$$

- \rightarrow Error is reduced by a factor of at least γ on each iteration \rightarrow Error decreases as γ^{N} after N iterations
\rightarrow Exponentially fast convergence

Convergence rate?

- \#Iterations to reach an error bound ε ?
- Utilities of all states are bounded by $\pm \mathrm{R}_{\max } /(1-\gamma)$ (this is the sum of the geometric series representing the utility)
- \rightarrow Maximum initial error: $\varepsilon_{0}=\left\|\boldsymbol{V}_{0}-\boldsymbol{V}^{*}\right\| \leq 2 \mathrm{R}_{\max } /(1-\gamma)$
- After N iterations: $\varepsilon_{\mathrm{N}} \leq \gamma^{\mathrm{N}} 2 \mathrm{R}_{\text {max }} /(1-\gamma)$
- The \#iterations to have an error of at most ε grows with γ :

$$
N=\left\lceil\log \left(2 R_{\max } / \epsilon(1-\gamma)\right) / \log (1 / \gamma)\right\rceil
$$

- N grows rapidly as γ is selected to be close to 1

Convergence in the grid world

BELLMAN UPDATE ERROR AND θ

- Question: how do we set θ in the termination condition?
- Previous error bounds, that are quite conservative and might not be a good indicator on when to stop
- A better bound relates the error $\left\|\boldsymbol{V}_{\mathrm{k}+1}-\boldsymbol{V}^{*}\right\|$ in \boldsymbol{V} to the size $\left\|\boldsymbol{V}_{\mathrm{k}+1}-\boldsymbol{V}_{\mathrm{k}}\right\|$ of the Bellman update at each iteration: If $\left\|V_{\mathrm{k}+1}-V_{\mathrm{k}}\right\|<\varepsilon(1-\gamma) / \gamma \Rightarrow\left\|V_{\mathrm{k}+1^{-}} V^{*}\right\|<\varepsilon$
(Ronald J. Williams and Leemon C. Baird III. Tight performance bounds on greedy policies based on imperfect value functions. Technical Report NU-CCS-93-14, 1993)
- \Rightarrow A good choice is: $\theta=\varepsilon(1-\gamma) / \gamma$, based on desired ε, γ

Policy Loss

- Question: do we really need to wait for convergence in the value functions before to use the value functions to define a good (greedy) policy?
- $\left\|V^{\pi(k)}-V^{*}\right\|=$ Policy loss: the max the agent can lose by executing $\pi(k)$ instead of $\pi^{*} \rightarrow$ This is what matters!
- $\pi(k)$ is the greedy policy obtained at iteration k from V_{k} and $V^{\pi(k)}(s)$ is value of state s applying greedy policy $\pi(k)$

Policy Loss

- Using previous results for the bound, it can be shown that:

$$
\text { If }\left\|V_{k}-V^{*}\right\|<\varepsilon \Rightarrow\left\|V^{\pi(k)}-V^{*}\right\|<2 \varepsilon \gamma /(1-\gamma)
$$

- In practice, it often occurs that $\pi(k)$ becomes optimal long before V_{k} has converged!

Grid World: After $k=4$, the greedy policy is optimal, while the estimation error in V_{k} is still 0.46

Policy Iteration: Motivation

- Is the error in value function estimation really essential to extract the optimal policy? (which is what the agent needs)
- Not really, if one action (the optimal) gets really better than the others, the exact magnitude of the $V(s)$ doesn't really matter to select the action in the greedy policy (i.e., don't need "precise" V values), more important are relative proportions

Policy Iteration

- Policy iteration, alternate:
- Policy evaluation: given a policy calculate the value of each state as that policy were executed
- Policy improvement: Calculate a new policy according to the maximization of the utilities using one-step look-ahead based on current policy
$\pi_{0} \xrightarrow{\mathrm{E}} v_{\pi_{0}} \xrightarrow{\mathrm{I}} \pi_{1} \xrightarrow{\mathrm{E}} v_{\pi_{1}} \xrightarrow{\mathrm{I}} \pi_{2} \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_{*} \xrightarrow{\mathrm{E}} v_{*}$

(Generalized) Policy Iteration

$\pi_{0} \xrightarrow{\mathrm{E}} v_{\pi_{0}} \xrightarrow{\mathrm{I}} \pi_{1} \xrightarrow{\mathrm{E}} v_{\pi_{1}} \xrightarrow{\mathrm{I}} \pi_{2} \xrightarrow{\mathrm{E}} \cdots \xrightarrow{\mathrm{I}} \pi_{*} \xrightarrow{\mathrm{E}} v_{*}$

(Iterative) Policy Evaluation

1. Initialization:

Input π, the policy to be evaluated
Initialize $V(s) \forall s \in S$ (e.g., $V(s)=0$)
2. Policy Evaluation:

Repeat
$\Delta \leftarrow 0$
$k \leftarrow 0$
Foreach $s \in S$

$$
\begin{aligned}
& v \leftarrow V(s) \\
& V_{k+1}(s) \leftarrow \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right] \\
& \Delta \leftarrow \max (\Delta,|v-V(s)|) \\
& k \leftarrow k+1
\end{aligned}
$$

Until $\Delta<\theta$ (small positive number)
Output $\boldsymbol{V} \approx \boldsymbol{V}^{\boldsymbol{\pi}}$

Analytic Solution is also possible!

$$
V^{\pi}(s)=\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right]
$$

Let T^{π} be a $\mathrm{S} \times \mathrm{S}$ matrix where the (i, j) entry is:

$$
\begin{gathered}
T^{\pi}\left(s_{i}, s_{j}\right)=p\left(s_{j} \mid s_{i}, \pi\left(s_{i}\right)\right) \\
\vec{V}=T^{\pi} \vec{R}+\gamma T^{\pi} \vec{V}
\end{gathered}
$$

$$
\vec{V}-\gamma T^{\pi} \vec{V}=T^{\pi} \vec{R}
$$

[Requires taking an

$$
\vec{V}=\left(1-\gamma T^{\pi}\right)^{-1} T^{\pi} \vec{R}
$$ inverse of a S by S matrix

$\mathrm{O}\left(\mathrm{S}^{3}\right)$

Policy Improvement

- Suppose we have computed V^{π} for a deterministic policy π
- For a given state s, is there any better action $a, a \neq \pi(s)$?
- The value of doing a in s can be computed with $Q^{\pi}(s, a)$
- If an $a \neq \pi(s)$ is found, such that $\mathrm{Q}^{\pi}(s, a)>\mathrm{V}^{\pi}(s)$, then it's better to switch to action a
- The same can be done for all states

Policy Improvement

- \rightarrow A new policy π^{\prime} can be obtained in this way by being greedy with respect to the current V^{π}

$$
\pi^{\prime}(s)=\arg \max _{a} Q^{\pi}(s, a) \quad \forall s \in S
$$

- Performing the greedy operation ensures that $\mathrm{V}^{\pi^{\prime}} \geq \mathrm{V}^{\pi}$
- \rightarrow Monotonic policy improvement by being greedy wrt current value functions / policy
- If $V^{\pi^{\prime}}=V^{\pi}$ then we are back to the Bellman equations, meaning that both policies are optimal there is no further space for improment

Monotonic Improvement in Policy

- For any two value functions V_{1} and $V_{2}, \mathrm{~V}_{1} \geq \mathrm{V}_{2}$ $\leftrightarrow V_{1}(s) \geq V_{2}(s) \quad \forall s \in \mathrm{~S}$
- Proposition: $\mathrm{V}^{\pi} \geq \mathrm{V}^{\pi}$ with strict inequality if π is suboptimal, where π^{\prime} is the new policy we get from doing policy improvement (i.e., being onestep greedy)

Proof

$V^{\pi}(s) \leq \max _{a} Q^{\pi}(s, a)$

$$
\begin{aligned}
& =\sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, \pi^{\prime}(s)\right)\left[R\left(s, \pi^{\prime}(s), s^{\prime}\right)+\gamma V^{\pi}\left(s^{\prime}\right)\right] \\
& \leq \sum_{s \in S} p\left(s^{\prime} \mid s, \pi^{\prime}(s)\right)\left[R\left(s, \pi^{\prime}(s), s^{\prime}\right)+\gamma \max _{a^{\prime}} Q^{\pi}\left(s^{\prime}, a^{\prime}\right)\right] \\
& =\sum_{r \in S^{\prime}\left(s^{\prime} \mid s, \pi^{\prime}(s)\right)}\left[\begin{array}{l}
R\left(s, \pi^{\prime}(s), s^{\prime}\right)+ \\
\left.\sum_{s \in S} P^{\prime \prime}\left|s^{\prime \prime}\right| s^{\prime}\left(s^{\prime}\right)\right)\left(R\left(s^{\prime}, \pi^{\prime}\left(s^{\prime}\right), s^{\prime \prime}+\gamma V^{\pi}\left(s^{\prime \prime}\right)\right)\right.
\end{array}\right] \\
& \ldots \leq V^{\pi^{\prime}(s)}
\end{aligned}
$$

Policy Iteration

1. Initialization:
$V(s) \in \mathbb{R}$ and $\pi(s) \in A(s)$ arbitrarily for all $s \in S$
2. Policy Evaluation:

Repeat
$\Delta \leftarrow 0$
$k \leftarrow 0$
Foreach $s \in S$

$$
\begin{aligned}
& v \leftarrow V_{k} \\
& V_{k+1} \leftarrow \sum_{s^{\prime} \in S} p\left(s^{\prime} \mid s, \pi(s)\right)\left[R\left(s, \pi(s), s^{\prime}\right)+\gamma V_{k}\left(s^{\prime}\right)\right] \\
& \quad \Delta \leftarrow \max \left(\Delta,\left|v-V_{k+1}(s)\right|\right) \\
& k \leftarrow k+1
\end{aligned}
$$

Until $\Delta<\theta$ (small positive number)
Output $\boldsymbol{V} \approx \boldsymbol{V}^{\pi}$

Policy Iteration

3. Policy Improvement:
policy-stable \leftarrow true
Foreach $s \in S$
old-action $\leftarrow \pi(s)$
$\pi(s) \leftarrow \arg \max _{a \in A(s)} \sum_{s^{\prime}} p\left(s^{\prime} \mid s, a\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V\left(s^{\prime}\right)\right]$
If old-action $\neq \pi(s)$ policy-stable \leftarrow false
If policy-stable
stop
return $\boldsymbol{V} \approx \boldsymbol{V}^{*}, \pi \approx \pi^{*}$
Else
Goto 2.

Policy Iteration

Maintain value of policy Improve policy

Value Iteration
Keep optimal value for finite steps, increase steps

Policy Iteration

Fewer Iterations
More expensive per iteration

$O\left(|\mathrm{~A}| \cdot|\mathrm{S}|^{2}\right)$ Improvement $O\left(\left||\mathrm{~S}|^{3}\right)\right.$ Evaluation
$\operatorname{Max}|\mathrm{A}|^{|S|}$ possible policies
to evaluate and improve

Value Iteration

More iterations
Cheaper per iteration

$O\left(|\mathrm{~A}| \cdot|\mathrm{S}|^{2}\right)$ per iteration
In principle an exponential number of iterations to $\varepsilon \rightarrow 0$

MDPs: What You Should Know

- Definition
- How to define for a problem
- Value iteration and policy iteration
- How to implement
- Convergence guarantees
- Computational complexity

