
CMU 15-781
Lecture 11:
Markov Decision Processes II

Teacher:
Gianni A. Di Caro

RECAP: DEFINING MDPS
• Markov decision processes:

o Set of states S
o Start state s0
o Set of actions A
o Transitions P(s’|s,a) (or T(s,a,s’))
o Rewards R(s,a,s’) (and discount γ)

• MDP quantities so far:
o Policy π = Choice of action for each state
o Utility/Value = sum of (discounted) rewards
o Optimal policy π* = Best choice, that max Utility

2

UTILITY AND POLICY SELECTION
• Utility of a state sequence (its return): sum of the

discounted rewards obtained during the state sequence

• Utility/return of the state sequence from current state st

• The rational agent tries to select actions so that the sum
of the discounted rewards it receives over the future is
maximized (i.e., its utility is maximized)

3

U(st) = U([st+1, . . . , s1]) =
1X

k=0

�tR(st+k+1)

U(st) = U([st+1, . . . , s1]) =
1X

k=0

�kR(st+k+1)

UTILITY AND POLICY SELECTION

• State/reward sequences depend on applied policy π, and
effects of probabilistic transitions P(s’| s, π(s)) on actions

• → Rational agent aims to find the action policy π* that
maximizes the expected value of the utility for all s0∈S

4

VALUE FUNCTION AND Q-FUNCTION

• The value Vπ(s) of a state s under the policy π is the
expected value of its return, the utility of all state
sequences starting in s and applying π

5

State
Value-function

• The value Q π(s,a) of taking an action a in state s under
policy π is the expected return starting from s, taking
action a, and thereafter following π:

V ⇡(s) = E

" 1X

t=0

�tR(st)
�� s0 = s

#

Q⇡(s, a) = E

" 1X

t=0

�tR(st)
�� s0 = s, a0 = a

#
Action
Value-function

VALUE FUNCTION

6

V ⇡(s) = E

" 1X

t=0

�tR(st+1)
�� s0 = s

#

! E

" 1X

k=0

�kR(st+k+1)
�� st = s

#

= E

"
R(st+1) + �R(st+2) + �2R(st+3) + . . .

#

= E

"
R(st+1) + �

1X

k=0

�kR(sk+t+2)
�� st = s

#

= E

"
R(st+1) + �V ⇡(st+1)

�� st = s

#

BELLMAN EQUATION FOR
VALUE FUNCTION

7

• Expected immediate reward (short-term) for taking action
π(s) prescribed by π for state s + Expected future reward
(long-term) get after taking that action from that state and
following π

V ⇡(s) = E

"
R(st+1) + �V ⇡(st+1)

�� st = s

#

=
X

s02S

p
⇣
s0 | s,⇡(s)

⌘h
R(s,⇡(s), s0) + �V ⇡(s0)

i
8s 2 S

BELLMAN EQUATION FOR
VALUE FUNCTION

8

State s
π(s)

a

s0 s00 s000

V ⇡(s) =
X

s02S

p
⇣
s0 | s,⇡(s)

⌘h
R(s,⇡(s), s0) + �V ⇡(s0)

i
8s 2 S

R(s0)
R(s00) R(s000)

V ⇡(s000)V ⇡(s00)V ⇡(s0)

• Additivity of utility +
• Markov property

• Relation between the value of a
state and that of its neighbors

• Recursive state equations that
need to be mutually consistent

Backup diagram Average

Average

BELLMAN EQUATION FOR
VALUE FUNCTION

9

V ⇡(s) =
X

s02S

p
⇣
s0 | s,⇡(s)

⌘h
R(s,⇡(s), s0) + �V ⇡(s0)

i
8s 2 S

• How do we find V values for all states?

• |S| linear equations in |S| unknowns

VALUES FOR THE GRID WORLD STATES

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

𝛾=1, R(s)=-00.4

10

π
(π is also optimal)

A GOLF CLUB EXAMPLE

11

• Value of a state: negative of the number of
strokes to the hole from that location

• Actions: which club to use {putter, driver}
• Policy: only use the putter

Example from Sutton and Barto

OPTIMAL STATE AND
ACTION VALUE FUNCTIONS

• V*(s) = Highest possible expected utility from s

• Optimal action-value function:

12

V ⇤
(s) = max

⇡
V ⇡

(s) 8s 2 S

Q⇤
(s, a) = max

⇡
Q⇡

(s, a) 8 s 2 S, a 2 A

OPTIMAL ACTION-VALUE EXAMPLE

13

• Optimal action-values for choosing club=driver,
and afterward select either the driver or the
putter, whichever is better.

Example from Sutton and Barto

BELLMAN OPTIMALITY EQUATIONS FOR V

14

V ⇤
(s) = max

a2A(s)
Q⇡⇤

(s, a)

= max

a2A(s)
E
h
R(st+1) + �V ⇤

(st+1)
�� st = s, at = a

i

= max

a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �V ⇤

(s0)
⇤

• The value V*(s)=Vπ*(s) of a state s under the
optimal policy π* must equal the expected utility
for the best action from that state →

BELLMAN OPTIMALITY EQUATIONS FOR V

15

• |S| non-linear equations in |S| unknowns
• The vector V* is the unique solution to the system

V ⇤
(s) = max

a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �V ⇤

(s0)
⇤

8s 2 S

V ⇤(s)

BELLMAN OPTIMALITY EQUATIONS FOR Q

16

• |S| × |A(s)| non-linear equations
• The vector Q* is the unique

solution to the system

Q⇤
(s, a) = E

h
R(st+1) + �max

a0
Q⇤

(st+1, a
0
)

�� st = s, at = a
i

=

X

s02S

p
⇣
s0 | s, a

⌘h
R(s, a, s0) + � max

a0
Q⇤

(s0, a0)
i

8s 2 S, a 2 A

FINDING THE OPTIMAL POLICY

17

It’s one-step ahead search
→ Greedy policy with respect to V*

• If we have computed V* →

• If we have computed Q* →

⇡⇤
(s) = arg max

a2A(s)

X

s0

p
⇣
s0 | s, a

⌘h
R(s, a, s0) + �V ⇤

(s0)
i

⇡⇤
(s) = arg max

a2A(s)
Q⇤

(s, a)

= arg max

a2A(s)

X

s02S

p
⇣
s0 | s, a

⌘h
R(s, a, s0) + � max

a0
Q⇤

(s0, a0)
i

OPTIMAL V* FOR THE GRID WORLD

• V*(1,1) = 𝛾 max{u,l,d,r} [
{0.8V*(1,2) + 0.1V*(2,1) + 0.1V*(1,1)}, up
{0.9V*(1,1) + 0.1V*(1,2)}, left
{0.9V*(1,1) + 0.1V*(2,1)}, down
{0.8V*(2,1) + 0.1V*(1,2) + 0.1V*(1,1)} right
]

18

For our grid world (find that up is the best),
Let’s omit the rewards, assuming R=0:

V ⇤
(s) = max

a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �V ⇤

(s0)
⇤

8s 2 S

V* FOR RECYCLING ROBOT

19

Two states {high, low}

HOW DO WE SOLVE THE BELLMAN
OPTIMALITY EQUATIONS?

20

• |S| non-linear equations in |S| unknowns (because of max)
• Equations suggest an iterative, recursive update approach

V ⇤
(s) = max

a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �V ⇤

(s0)
⇤

8s 2 S

Vk+1(s) max

a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �Vk(s

0
)

⇤
8s 2 S

State Backup: Vk+1 = BVk

VALUE ITERATION

21

Sweep state space

Bellman update / Backup operator

Or a criterion based on V
estimation error (see later)

1. Initialization:

Initialize arbitrarily V (s) 8s 2 S (e.g., V (s) = 0)

2. Value Iteration:

Repeat

� 0
k 0
Foreach s 2 S

v V (s)

Vk+1(s) max
a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �Vk(s

0)
⇤

� max(�, |v � V (s)|)
k k + 1

Until � < ✓ (small positive number)

Output a deterministic policy ⇡ ⇡ ⇡⇤, such that

⇡(s) = arg max
a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �Vk(s

0)
⇤

VALUE ITERATION ON GRID WORLD

22Example figures from P. Abbeel

R(s)=0
everywhere
except at the
terminal states

Vk(s) =0 at k=0

1 2 3 4

1

2

3

23

V
k+1([i, j]) max

⇥ ⇤

max

"(
p
�
[i+ 1, j] | [i, j], u

�⇣
R([i+ 1, j]) + �V

k

([i+ 1, j])
⌘
+ p

�
[i� 1, j] | [i, j], u

�⇣
R([i� 1, j]) + �V

k

([i� 1, j])
⌘
+

p
�
[i, j + 1] | [i, j], u

�⇣
R([i, j + 1]) + �V

k

([i, j + 1])

⌘
+ p

�
[i, j � 1] | [i, j], u

�⇣
R([i, j � 1]) + �V

k

([i, j � 1])

⌘
+

p
�
[i, j] | [i, j], u

�⇣
R([i, j]) + �V

k

([i, j])
⌘)

up

,

(
p
�
[i+ 1, j] | [i, j], d

�⇣
R([i+ 1, j]) + �V

k

([i+ 1, j])
⌘
+

p
�
[i� 1, j] | [i, j], d

�⇣
R([i� 1, j]) + �V

k

([i� 1, j])
⌘
+ p

�
[i, j + 1] | [i, j], d

�⇣
R([i, j + 1]) + �V

k

([i, j + 1])

⌘
+

p
�
[i, j � 1] | [i, j], d

�⇣
R([i, j � 1]) + �V

k

([i, j � 1])

⌘
+ p

�
[i, j] | [i, j], d

�⇣
R([i, j]) + �V

k

([i, j])
⌘)

down

,

(
p
�
[i+ 1, j] | [i, j], r

�⇣
R([i+ 1, j]) + �V

k

([i+ 1, j])
⌘
+

p
�
[i� 1, j] | [i, j], r

�⇣
R([i� 1, j]) + �V

k

([i� 1, j])
⌘
+ p

�
[i, j + 1] | [i, j], r

�⇣
R([i, j + 1]) + �V

k

([i, j + 1])

⌘
+

p
�
[i, j � 1] | [i, j], r

�⇣
R([i, j � 1]) + �V

k

([i, j � 1])

⌘
+ p

�
[i, j] | [i, j], r

�⇣
R([i, j]) + �V

k

([i, j])
⌘)

right

,

(
p
�
[i+ 1, j] | [i, j], l

�⇣
R([i+ 1, j]) + �V

k

([i+ 1, j])
⌘
+

p
�
[i� 1, j] | [i, j], l

�⇣
R([i� 1, j]) + �V

k

([i� 1, j])
⌘
+ p

�
[i, j + 1] | [i, j], l

�⇣
R([i, j + 1]) + �V

k

([i, j + 1])

⌘
+

p
�
[i, j � 1] | [i, j], l

�⇣
R([i, j � 1]) + �V

k

([i, j � 1])

⌘
+ p

�
[i, j] | [i, j], l

�⇣
R([i, j]) + �V

k

([i, j])
⌘)

left

#

VALUE ITERATION ON GRID WORLD

24Example figures from P. Abbeel

VALUE ITERATION ON GRID WORLD

25Example figures from P. Abbeel

VALUE ITERATION ON GRID WORLD

26Example figures from P. Abbeel

COMPUTATIONAL COST FOR 1 UPDATE
OF V(S) FOR ALL S IN VALUE

ITERATION?

27

• For all states s

|A|.|S|2

Vk+1(s) max

a2A(s)

X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �Vk(s

0
)

⇤
8s 2 S

DOES VALUE ITERATION CONVERGE?
• Yes, it does converge to a unique solution, V*
• It does because a backup operation B is a contraction

by a factor 𝛾 on the space of the state value vectors:
• If apply B to two different value functions, their max

norm distance shrinks

28

max norm: ||V || = max

s2S
|V (s)|

||V � V 0|| = max di↵erence between two corresponding states

+

||BV k �BV 0
k|| �||V k � V 0

k||

BELLMAN OPERATOR IS A CONTRACTION

BV −BV ' = max
a

R(s,a)+γ p(sj | si ,a)V (sj)sj∈S
∑$

%&
'
()
−max

a '
R(s,a ')−γ p(sj | si ,a ')V '(sj)sj∈S

∑$
%&

'
()

≤maxa R(s,a)+γ p(sj | si ,a)V (sj)− R(s,a)+γ p(sj | si ,a)V '(sj)sj∈S
∑sj∈S

∑%
&'

(
)*

≤ γmax
a,si

p(sj | si,a)V (sj)−V '(sj)sj∈S
∑

≤ γmax
a,si

p(sj | si,a) V −V 'sj∈S
∑

= γ V −V '

≤ γmax
a

p(sj | si ,a)V (sj)− p(sj | si ,a)V '(sj)sj∈S
∑sj∈S

∑%&'
(
)*

= γmax
a

p(sj | si ,a)(V (sj)−V '(sj))sj∈S
∑$%&

'
()

|| V-V’|| = Infinity norm (find max difference over all states, e.g. max(s) |V(s) – V’(s) |

29

Holds for 𝛾 < 1

PROPERTIES OF CONTRACTION

• Only has 1 fixed point (the point reach if apply a
contraction operator many times)
o If had two, then would not get closer when

apply contraction function, violating definition
of contraction

• When apply contraction function to any argument,
value must get closer to fixed point
o Fixed point doesn’t move
o Repeated function applications yield fixed point

30

VALUE ITERATION CONVERGES

• Value iteration converges to unique solution
which is the optimal value function

• Proof: limk→∞Vk =V *

Vk+1 −V * ∞
= BVk −V * ∞

≤ γ Vk −V * ∞
≤ ...

≤ γ k+1 V0 −V * ∞
→ 0

31

CONVERGENCE RATE?

Vk+1 −V * ∞
= BVk −V * ∞

≤ γ Vk −V * ∞
≤ ...

≤ γ k+1 V0 −V * ∞
→ 0

32

• ||Vk – V*|| = error in the estimate Vk , therefore by using
the previous relation:

• → Error is reduced by a factor of at least 𝛾 on each iteration
→ Error decreases as 𝛾N after N iterations
→ Exponentially fast convergence

CONVERGENCE RATE?

33

• #Iterations to reach an error bound ɛ?
• Utilities of all states are bounded by ±Rmax/(1-𝛾) (this is

the sum of the geometric series representing the utility)
• → Maximum initial error: ɛ0 = ||V0 – V*|| ≤ 2Rmax/(1-𝛾)
• After N iterations: ɛN ≤ 𝛾N 2Rmax/(1- 𝛾)

• The #iterations to have an error of at most ɛ grows with 𝛾:

• N grows rapidly as 𝛾 is selected to be close to 1
N = dlog(2R

max

/✏(1� �))/ log(1/�)e

CONVERGENCE IN THE GRID WORLD

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

1

10

100

1000

10000

100000

1e+06

1e+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Ite
ra

tio
ns

 re
qu

ire
d

Discount factor γ

c = 0.0001
c = 0.001
c = 0.01
c = 0.1

34

BELLMAN UPDATE ERROR AND 𝜃

35

• Question: how do we set 𝜃 in the termination condition?
• Previous error bounds, that are quite conservative and

might not be a good indicator on when to stop
• A better bound relates the error ||Vk+1 – V*|| in V to the

size ||Vk+1 – Vk|| of the Bellman update at each iteration:
If ||Vk+1 – Vk|| < ɛ(1- 𝛾)/ 𝛾 ⇒ ||Vk+1– V*||< ɛ
(Ronald J. Williams and Leemon C. Baird III. Tight performance bounds on greedy
policies based on imperfect value functions. Technical Report NU-CCS-93-14, 1993)

• ⇒ A good choice is: 𝜃 = ɛ(1- 𝛾)/ 𝛾, based on desired ɛ, 𝛾

POLICY LOSS

36

• Question: do we really need to wait for convergence in the
value functions before to use the value functions to define
a good (greedy) policy?

• ||Vπ(k) – V*|| = Policy loss: the max the agent can lose by
executing π(k) instead of π* → This is what matters!

• π(k) is the greedy policy obtained at iteration k from Vk
and Vπ(k)(s) is value of state s applying greedy policy π(k)

POLICY LOSS

37

• Using previous results for the bound, it can be shown that:

If ||Vk – V*|| < ɛ ⇒ ||Vπ(k) – V*|| < 2ɛ 𝛾/(1- 𝛾)

• In practice, it often occurs that π(k) becomes optimal long
before Vk has converged!

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

M
ax

 e
rr

or
/P

ol
ic

y
lo

ss

Number of iterations

Max error
Policy loss

Grid World: After k=4, the
greedy policy is optimal, while the
estimation error in Vk is still 0.46

POLICY ITERATION: MOTIVATION

38

• Is the error in value function estimation really
essential to extract the optimal policy?
(which is what the agent needs)

• Not really, if one action (the optimal) gets really
better than the others, the exact magnitude of the
V(s) doesn’t really matter to select the action in
the greedy policy (i.e., don’t need “precise” V
values), more important are relative proportions

POLICY ITERATION

39

• Policy iteration, alternate:
• Policy evaluation: given a policy calculate the

value of each state as that policy were executed
• Policy improvement: Calculate a new policy

according to the maximization of the utilities using
one-step look-ahead based on current policy

Figure from Sutton and Barto

(GENERALIZED) POLICY ITERATION

40Figure from Sutton and Barto

(ITERATIVE) POLICY EVALUATION

41

1. Initialization:

Input ⇡, the policy to be evaluated
Initialize V (s) 8s 2 S (e.g., V (s) = 0)

2. Policy Evaluation:

Repeat

� 0
k 0
Foreach s 2 S

v V (s)

Vk+1(s)
X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �Vk(s

0)
⇤

� max(�, |v � V (s)|)
k k + 1

Until � < ✓ (small positive number)

Output V ⇡ V ⇡

ANALYTIC SOLUTION IS ALSO POSSIBLE!

V π (s) = p(s ' | s,π (s)) R(s,π (s), s ')+γV π (s ')!" #$s '∈S∑

V = T π

R+γT π

V

T π (si, sj) = p(sj | si,π (si))
Let be a S x S matrix where the (i,j) entry is:

V −γT π

V = T π

R

V = (1−γT π)−1T π

R

T π

42

Requires taking an
inverse of a S by S

matrix
O(S3)

POLICY IMPROVEMENT

43

• Suppose we have computed Vπ for a deterministic policy π
• For a given state s, is there any better action a, a ≠ π(s)?
• The value of doing a in s can be computed with Qπ(s,a)

• If an a ≠ π(s) is found, such that Qπ(s,a) > Vπ(s), then it’s
better to switch to action a

• The same can be done for all states

POLICY IMPROVEMENT

44

• → A new policy π’ can be obtained in this way by being greedy
with respect to the current Vπ

• Performing the greedy operation ensures that Vπ’ ≥ Vπ

• → Monotonic policy improvement by being greedy wrt current
value functions / policy

• If Vπ’ = Vπ then we are back to the Bellman equations, meaning
that both policies are optimal, there is no further space for
improvement

⇡0
(s) = argmax

a
Q⇡

(s, a) 8 s 2 S

MONOTONIC IMPROVEMENT IN POLICY

• For any two value functions V1 and V2, V1 ≥ V2
↔ V1(s) ≥V2(s) ∀s∈S

• Proposition: Vπ’ ≥ Vπ with strict inequality if π is
suboptimal, where π’ is the new policy we get
from doing policy improvement (i.e., being one-
step greedy)

PROOF

V π (s) ≤maxa Q
π (s,a)

= p(s ' | s,π '(s)) R(s,π '(s), s ')+γV π (s ')"# $%s '∈S∑
≤ p(s ' | s,π '(s)) R(s,π '(s), s ')+γmaxa 'Q

π (s ',a ')"# $%s '∈S∑

= p(s ' | s,π '(s))
R(s,π '(s), s ')+

γ p(s '' | s ',π '(s '))(R(s ',π '(s '), s ''+γV π (s ''))
s '∈S∑

#

$
%
%

&

'
(
(s '∈S∑

... ≤V π ' (s)

POLICY ITERATION

47

1. Initialization:

V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation:

Repeat

� 0
k 0
Foreach s 2 S

v Vk

Vk+1
X

s02S

p
�
s0|s, ⇡(s)

�h
R(s, ⇡(s), s0) + �Vk(s

0)
i

� max(�, |v � Vk+1(s)|)
k k + 1

Until � < ✓ (small positive number)
Output V ⇡ V ⇡

POLICY ITERATION

48

1. Initialization:

V (s) 2 R and ⇡(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation:

Repeat

� 0

k 0

Foreach s 2 S
v V (s)

Vk+1(s)
X

s02S

p(s0|s, a)
⇥
R(s, a, s0) + �Vk(s

0
)

⇤

k k + 1

Until � < ✓ (small positive number)

3. Policy Improvement:

policy-stable true
Foreach s 2 S

old-action ⇡(s)

⇡(s) arg max

a2A(s)

X

s0

p
⇣
s0 | s, a

⌘h
R(s, a, s0) + �V (s0)

i

If old-action 6= ⇡(s)
policy-stable false

If policy-stable

stop

return V ⇡ V ⇤
, ⇡ ⇡ ⇡⇤

Else

Goto 2.

Drawings	by	Ketrina Yim

Value	Iteration
Keep	optimal	value	for	

finite	steps,	increase	steps

Policy	Iteration
Maintain	value	of	policy

Improve	policy

Drawings	by	Ketrina Yim

Value	Iteration
More	iterations

Cheaper	per	iteration

Policy	Iteration
Fewer	Iterations

More	expensive	per	iteration

O(|A|.|S|2) Improvement
O(||S|3) Evaluation
Max |A||S| possible policies
to evaluate and improve

O(|A|.|S|2) per iteration
In principle an exponential
number of iterations to ɛ→0

MDPS: WHAT YOU SHOULD KNOW

• Definition
• How to define for a problem
• Value iteration and policy iteration

o How to implement
o Convergence guarantees
o Computational complexity

