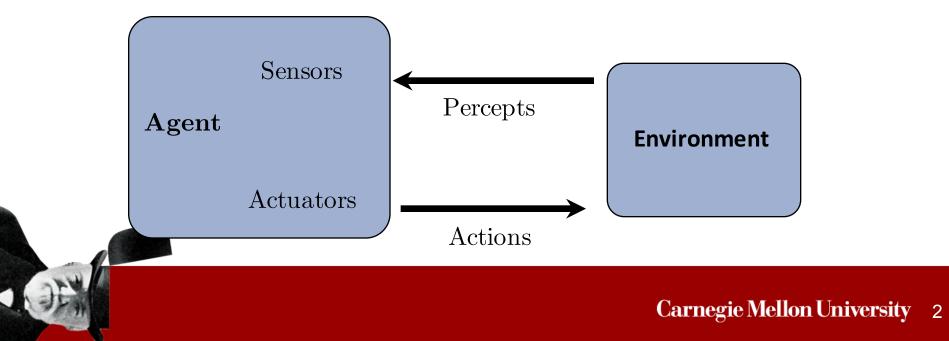
CMU 15-781 Lecture 10: Markov Decision Processes I

Teacher: Gianni A. Di Caro

DECISION-MAKING, SO FAR ...

- Known environment
- Full observability
- Deterministic world

Plan: Sequence of actions with **deterministic consequences**, each next state is known with certainty



ACTIONS' OUTCOMES ARE USUALLY UNCERTAIN IN THE REAL WORLD!

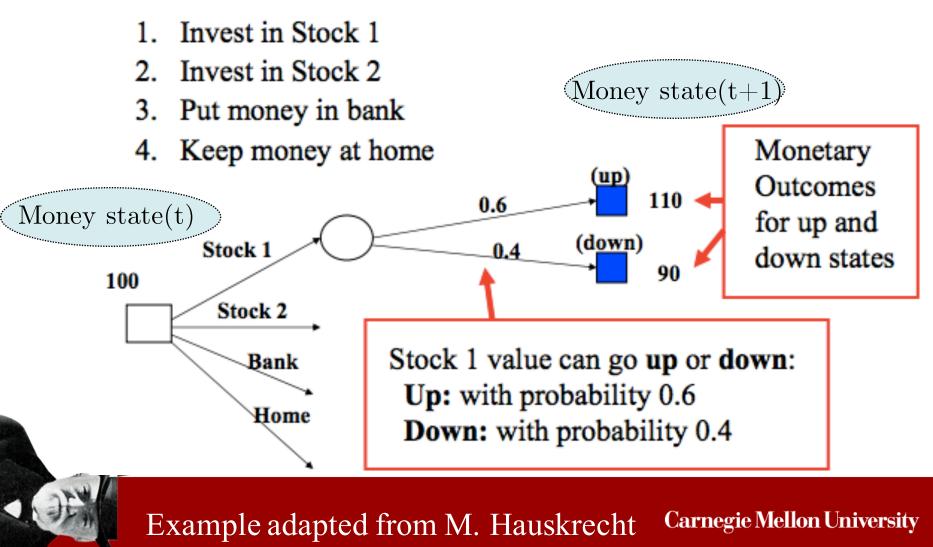
Action effect is *stochastic*: probability distribution over next states

Deterministic, one single successor state: $(s, a) \rightarrow s'$ Probabilistic, conditional distribution of successor states: $(s, a) \rightarrow P(s'|s, a)$

In general, we need a sequence of actions (decisions): $(s_t, a_t) \rightarrow P(s_{t+1} = s' \mid s_t = s, a_t = a)$

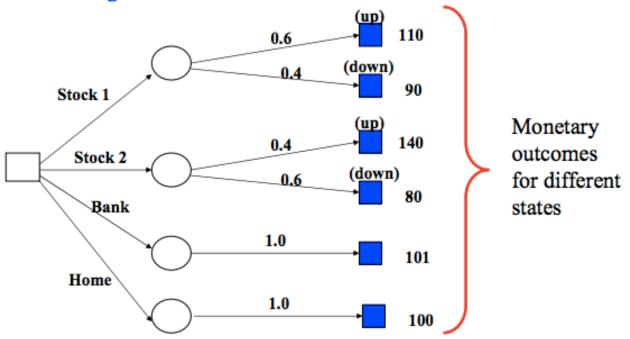
In general, the outcome can depend on all history of actions: $P(s_{t+1} = s' \mid s_t, s_{t-1}, \dots, s_0, a_t, a_{t-1}, \dots, a_0) = P(s_{t+1} = s' \mid s_{t:0}, a_{t:0})$

STOCHASTIC DECISION MAKING EXAMPLE



STOCHASTIC DECISION MAKING EXAMPLE

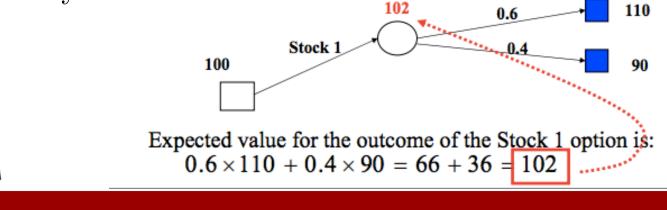
Investing of \$100 for 6 months



How a *rational agent* makes a choice, given that its *preference* is to make money?

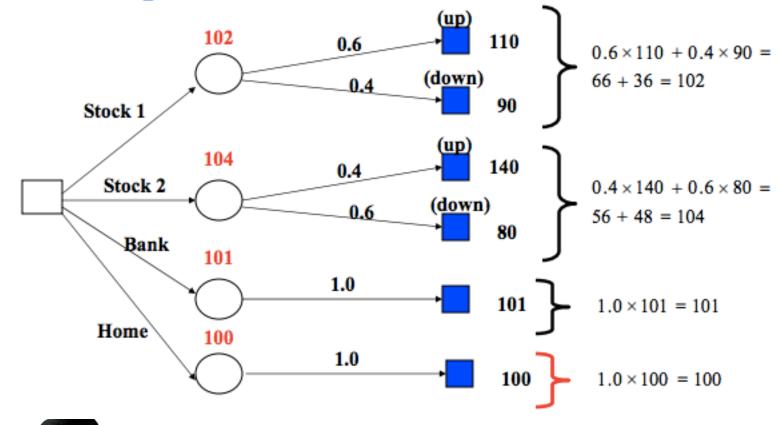
EXPECTED VALUES

- X = random variable representing the monetary outcome for taking an action, with values in Ω_X (e.g., $\Omega_X = \{110, 90\}$ for action Stock 1)
- Expected value of X is: $E(X) = \sum_{x \in \Omega_X} xP(X = x)$
- Expected value summarizes all stochastic outcomes into a single quantity

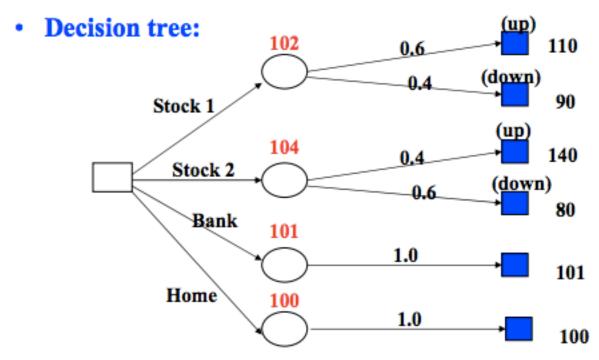


EXPECTED VALUES

Investing \$100 for 6 months



OPTIMAL DECISION

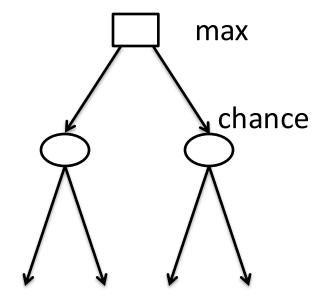


The optimal decision is the action that maximizes the expected outcome

- decision node
 - 🔘 chance node
 - outcome (value) node

WHERE DO PROBABILITIES VALUES COME FROM?

- Models
- Data
- For now assume we are *given* the probabilities for any chance node



MARKOV DECISION PROCESSES (MPDS)

- Consider multi-step decisions under stochastic action effects
- Add a state-dependent reward (cost) for each action taken
- Assume as known the probability model (system dynamics)
- Assume that only the current state and action matters for taking a decision Markov property (memoryless):

$$P(s_{t+1} = s' \mid s_{t:0}, a_{t:0}) = P(s_{t+1} = s' \mid s_t, a_t)$$

MARKOV DECISION PROCESSES (MPD)

 S_0

- A set S of world states
- A set A of feasible actions
- A stochastic transition matrix T, $T: S \times S \times A \times \{0, 1, \dots, H\} \mapsto [0, 1], T(s, s', a) = P(s'|s, a)$
- A reward function R $R(s)|R(s,a), |R(s,a,s'), R: S \times A \times S \times \{0, 1, \dots, H\} \mapsto \mathbb{R}$
- A start state (or a distribution of initial states)
- Terminal (goal) states

Goal: define decision sequences that maximize a given function of the rewards

 R_0

S,

 R_1

 S_2

 A_2

 R_2

53

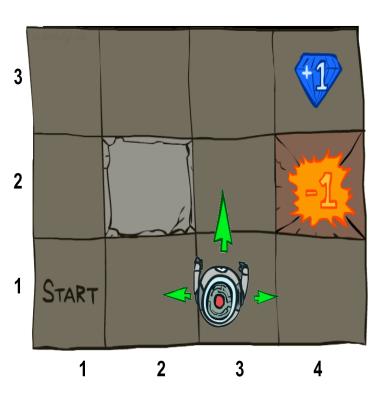
TAXONOMY OF MARKOV PROCESSES

- Markov decision process (MDP)
- Markov reward process $MDP \setminus \{Actions\}$
- Markov chain: MDP $\ \$ {Actions} $\ \$ {Rewards}

All share the *state set* and the *transition matrix*, that defines the internal stochastic dynamics of the system

EXAMPLE: GRID WORLD

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action takes the agent in the desired direction (if there is no wall there)
 - 10% of the time, the action takes the agent to the direction perpendicular to the right; 10% perpendicular to the left.
 - If there is a wall in the direction the agent would have gone, agent stays put

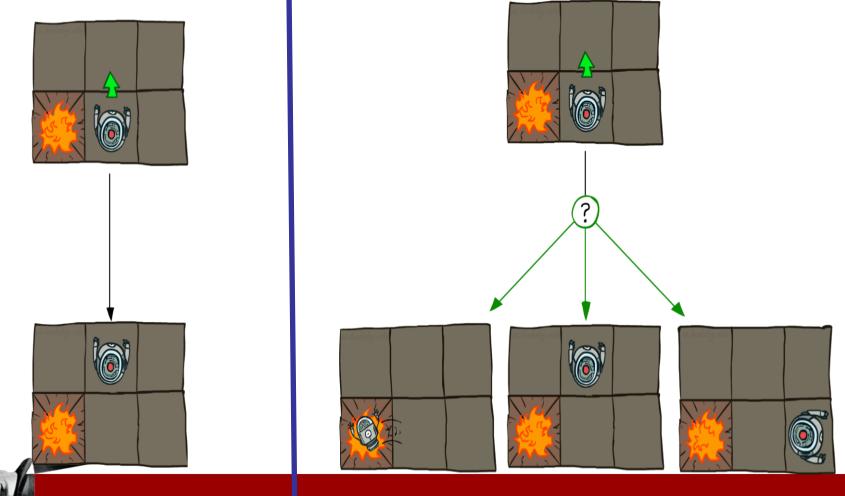


Slide adapted from Klein and Abbeel

GRID WORLD ACTIONS

Stochastic Grid World

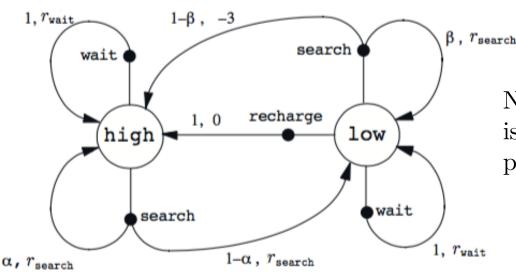
Deterministic Grid World



Slide adapted from Klein and Abbeel

RECYCLING ROBOT

- At each step, robot has to decide whether it should: search for a can; wait for someone to bring it a can; go to home base and recharge. Searching is better but runs down the battery; if runs out of power while searching, has to be rescued.
- States are battery levels: high, low.
- Reward = number of cans collected.



	8	s'	a	p(s' s,a)	$r(s,a,s^\prime)$
	high	high	search	α	$r_{\texttt{search}}$
	high	low	search	1-lpha	$r_{\texttt{search}}$
r 5	low	high	search	1-eta	-3
	low	low	search	β	$r_{\texttt{search}}$
	high	high	wait	1	r_{wait}
	high	low	wait	0	r_{wait}
	low	high	wait	0	$r_{\texttt{wait}}$
	low	low	wait	1	$r_{\texttt{wait}}$
	low	high	recharge	1	0
	low	low	recharge	0	0.
			,		

Note: the "state" (robot's battery status) is a parameter of the agent itself, not a property of the physical environment

Example from Sutton and Barto

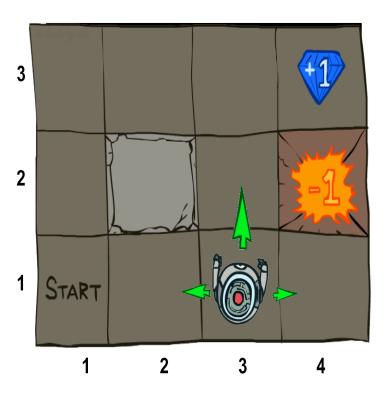
POLICIES

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- In MDPs instead of plans, we have a policy, a mapping from states to actions: $\pi: S \to A$
 - $\pi(s)$ specifies what action to take in each state \rightarrow deterministic policy
 - $_{\circ}$ An explicit policy defines a *reflex agent*
- A policy can also be *stochastic*, $\pi(s,a)$ specifies the probability of taking action a in state s (in MDPs, if R is deterministic, the *optimal* policy is deterministic)

Slide adapted from Klein and Abbeel

HOW MANY POLICIES?

- How many non-terminal states?
- How many actions?
- How many deterministic policies over non-terminal states?
- 9, 4, 4^9



UTILITY OF A POLICY

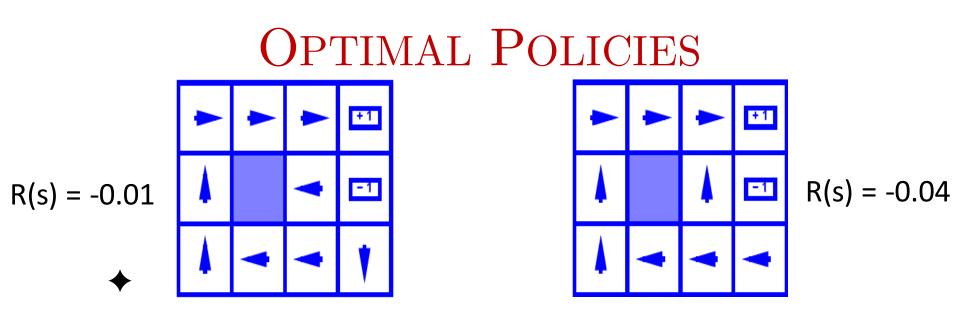
- Starting from s_{0} , applying the policy π , generates a sequence of states s_0, s_1, \dots, s_t , and of rewards r_0, r_1, \dots, r_t
- For the (rational) decision-maker each sequence has an **utility** based on the *preferences* of the DM
- "Utility is an additive combination of the rewards"
- The utility, or *value* of a policy π starting in state s_0 is the expected utility over all the state sequences generated by the applying π

 $P^{\pi}(\text{sequence})U(\text{sequence})$

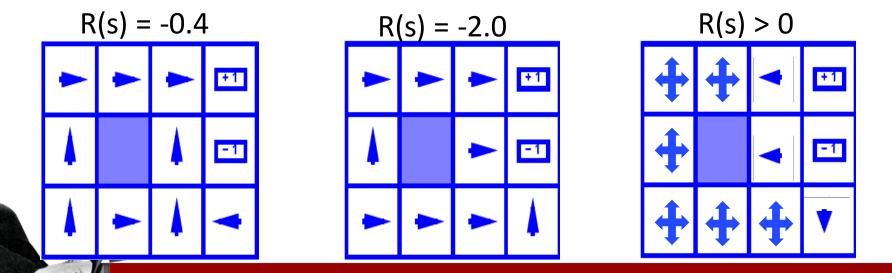
 \forall state sequences starting from s_0

OPTIMAL POLICIES

- An optimal policy π^* yields the maximal utility
- The maximal expected sum of rewards from following it starting from the initial state
- **Principle of maximum expected utility**: a rational agent should choose the action that maximizes its expected utility

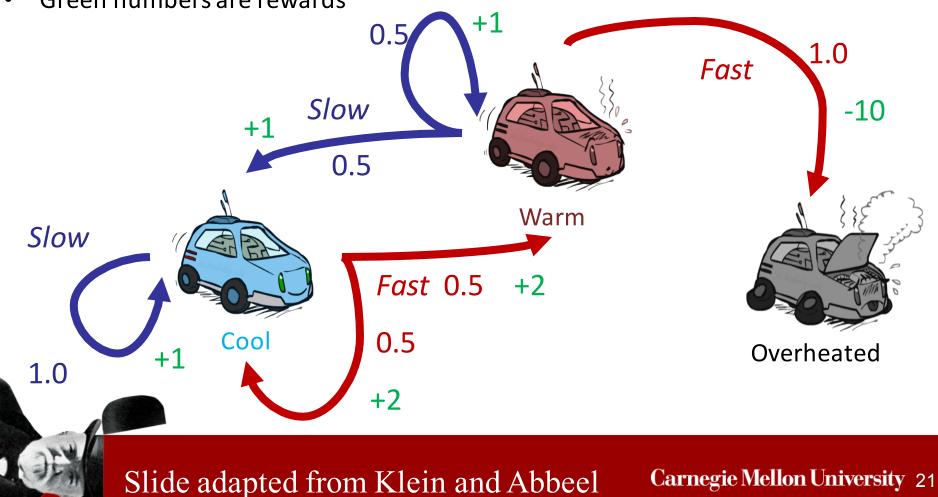


Balance between **risk** and **reward** changes depending on the value of R(s)

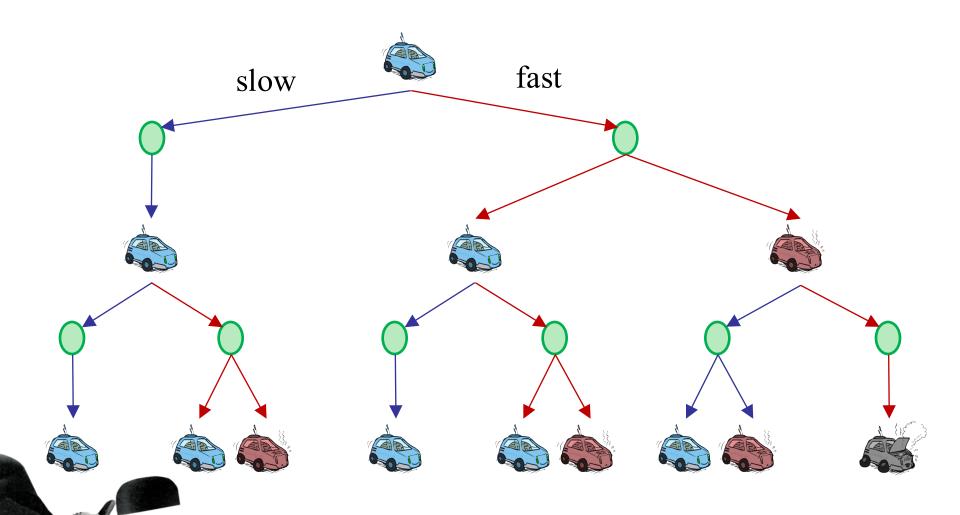


- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: *Slow*, *Fast*
- Going faster gets double reward
- Green numbers are rewards

EXAMPLE: RACING

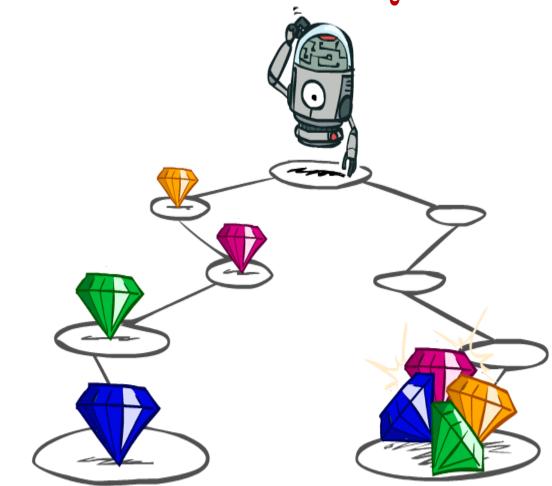


RACING SEARCH TREE



Slide adapted from Klein and Abbeel

UTILITIES OF SEQUENCES



Slide adapted from Klein and Abbeel

UTILITIES OF SEQUENCES

- What preferences should an agent have over reward sequences?
- More or less?

 [1, 2, 2] or [2, 3, 4]

 Now or later?

 [0, 0, 1] or [1, 0, 0]



Slide adapted from Klein and Abbeel

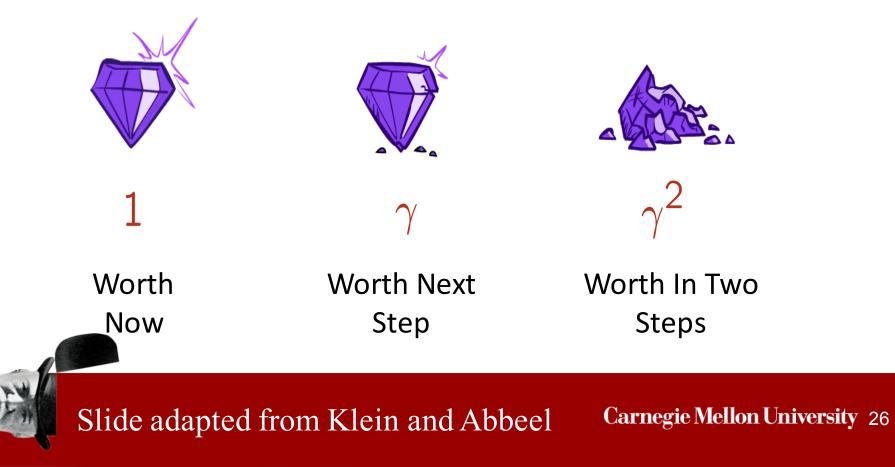
STATIONARY PREFERENCES

- Then: there are only two ways to define utilities over sequences of rewards
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

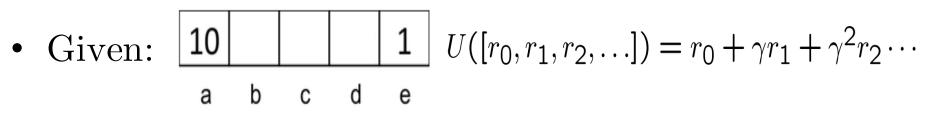
Slide adapted from Klein and Abbeel

WHAT ARE DISCOUNTS?

- It's reasonable to prefer rewards now to rewards later
- Decay rewards exponentially



DISCOUNTING



- \circ Actions: East, West
- Terminal states: a and e (end when reach one or the other)
- Transitions: deterministic
- \circ Reward for reaching a is 10
- \circ reward for reaching e is 1, and the reward for reaching all other states is 0
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
- Quiz 2: For $\gamma = 0.1$, what is the optimal policy for states b, c and d?
- Quiz 3: For which γ are West and East equally good when in state d?

Slide adapted from Klein and Abbeel

DISCOUNTING

- Given: 10 1 $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$ a b c d e
 - \circ Actions: East, West
 - \circ Terminal states: a and e (end when reach one or the other)
 - Transitions: deterministic
 - \circ Reward for reaching a is 10
 - \circ reward for reaching e is 1, and the reward for reaching all other states is 0
- Quiz 1: For $\gamma = 1$, what is the optimal policy?
 - In all states, Go West (towards a)
- Quiz 2: For $\gamma = 0.1$, what is the optimal policy for states b, c and d? \circ b=W, c=W, d=E
- Quiz 3: For which γ are West and East equally good when in state d?

 $\gamma = \sqrt{(1/10)}$

Slide adapted from Klein and Abbeel

INFINITE UTILITIES?!

- Problem: What if the process lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (π depends on time left)

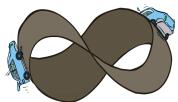
Discounting: use
$$0 < \gamma < 1$$

 $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\mathsf{max}}/(1-\gamma)$

- Smaller γ means smaller "horizon" – shorter term focus

Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Slide adapted from Klein and Abbeel



RECAP: DEFINING MDPS

- Markov decision processes:
 - \circ Set of states S
 - Start state s_0
 - \circ Set of actions A
 - Transitions $\mathbf{P}(s'|s,a)$ (or $\mathbf{T}(s,a,s')$)
 - Rewards R(s, a, s') (and discount γ)
- MDP quantities so far:
 - Policy π = Choice of action for each state
 - Utility/Value = sum of (discounted) rewards
 - Optimal policy $\pi^* = \text{Best choice}$, that max Utility