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Page 1 of 9



Part I: Short answers (40 points)

Even though the model solutions provide an explanation for each answer, you do not need to give
such explanations in the exam.

1. [5 points]
Recall that a “Manhattan Walk” is a walk on a grid that at each step either goes right or up.
How many Manhattan Walks are there from (x1, y1) to (x2, y2), where x1 ≤ x2 and y1 ≤ y2?

Solution:
(
y2−y1+x2−x1

x2−x1

)
Explanation: Out of the total (y2− y1+x2−x1) UP+RIGHT steps that need to be taken, determine
which x2 − x1 will be RIGHT (and the rest will be UP).

2. [5 points]
Is the group (Z7,+), i.e. {0, 1, 2, . . . , 6} under addition modulo 7, cyclic? If so, how many generators
does the group have?

Solution: Yes. 6 generators (all except 0).

Explanation: The generators of (Zn,+) are the integers coprime with n.

3. [5 points]
Suppose a planar graph G = (V,E) has a planar drawing such that every face has at least 4 edges.
Argue why G must have a vertex of degree at most 3.

Solution: Suppose for contradiction that every vertex has degree at least 4. Then, we have E ≥
4V/2 = 2V . We are also given that every face has at least 4 edges, and every edge is shared between
two faces. Therefore, 2E ≥ 4F , i.e., E ≥ 2F . Thus,

V − E + F ≤ E

2
− E +

E

2
= 0− F < 2.

Hence, G does not satisfy Euler’s formula, a contradiction. Thus, G must have a vertex of degree at
most 3.

4. [5 points]
How many polynomials in F3[x] have degree at most 3?

Solution: 34 = 81.

Explanation: Polynomials in F3[x] of degree at most 3 are of the form c3x
3 + c2x

2 + c1x+ c0, where
each ci ∈ {0, 1, 2}.
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5. [5 points]
Calculate

108(7
108) mod 35.

Solution: 3

Explanation: Note that ϕ(35) = 24, and ϕ(24) = 8. Now,

108(7
108) mod 35 = 108(7

108 mod 24) mod 35 = 108(7
108 mod 8 mod 24) mod 35

= 108(7
4 mod 24) mod 35 = 1081 mod 35 = 3.

6. [5 points]
In the Robertson-Webb model of cake cutting algorithms, what is the answer to cuti(0, evali(0,

1
π
))?

Solution: 1
π
.

Explanation: If c = evali(0,
1
π
), then cuti(0, c) asks for the endpoint x such that the value of [0, x] is

c for player i. Clearly, x = 1/π.

7. [5 points]
I throw a (k− 1)-sided die (with sides labeled 1, . . . , k− 1) n times, and get $1 every time the result
is in Z∗

k . What is the expected number of dollars that I get, as a function of n and ϕ(k)?

Solution: n · ϕ(k)/(k − 1).

Explanation: The chance of getting a number in Z∗
k is ϕ(k)/(k − 1). Use linearity of expectation.

8. [5 points]
Prove or disprove: In an election with two alternatives, Borda count is Condorcet consistent.

Solution: True. In an election with two alternatives, the Borda score of an alternative is the number
of times it is preferred over the other alternative. If there exists a Condorcet winner, it would have
score more than n/2 (where n is the number of voters), and the other alternative would have score
less than n/2. Hence, a Condorcet winner would always win.
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Part II: Homework problem (10 points)

The actual exam will include a homework problem.
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Part III: Longer Problems (50 points)

9. [10 points]
Prove that any finite group G which contains an even number of elements contains an element of
order 2.
Hint: Let t(G) = {g ∈ G | g ̸= g−1}. Show that t(G) has an even number of elements and every
non-identity element of G− t(G) has order 2.

Solution: Let t(G) = {g ∈ G | g ̸= g−1}. Note that g ∈ t(G) if and only if g−1 ∈ t(G). Since
g ̸= g−1 for every g ∈ t(G), we can pair up every element in t(G) with its inverse. This shows that
|t(G)| must be even. Since |G| is also even, we get that |G \ t(G)| must also be even.

Note that for the identity element e of G, e /∈ t(G) since e = e−1. Therefore, |G \ t(G)| > 0, so
|G \ t(G)| ≥ 2. Thus, there exists an element l ∈ G \ t(G) such that l ̸= e. By definition of t(G),
l = l−1, so the order of l is at most 2. However, l ̸= e, and e is the unique element with order 1.
Hence, order of l must be 2.
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10. [10 points]
For an integer n ≥ 1, define the language

Ln = {w ∈ {0, 1}⋆ | the n’th-to last symbol in w is a 1} .

Draw an NFA that accepts L3.

Solution:
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11. [10 points]
Consider the following problem: 15251-COLOR

INSTANCE: Simple undirected graph G = (V,E).

QUESTION: Does there exist a proper coloring of G using at most 15251 colors? (A proper coloring
colors the vertices so that no edge has two endpoints of the same color.)

Prove that 15251-COLOR is NP-complete.

Solution: First, we show that 15251-COLOR is in NP. Given a 15251-coloring of the input graph, one
could iterative over the edges, check if the two endpoints have different colors, and thus verify the
solution in polynomial time. Hence, 15251-COLOR is in NP.

We show that 15251-COLOR is NP-hard by showing a reduction from 3-COLOR, which is known to be
NP-complete. Given an instance G = (V,E) of 3-COLOR, for the graph G′ by adding a 15248-clique
to G, and connecting each vertex of the added clique to each vertex of G. We show that G is
3-colorable if and only if G′ is 15251-colorable. Given any 3-coloring of G, one could easily obtain
a 15251-coloring of G′ by simply coloring each of the 15248 added vertices with a new color. On
the other hand, suppose there exists a 15251-coloring of G′. Since the added 15248 vertices form
a clique, and each of them is connected to every vertex in G, they must use 15248 distinct colors,
which are further distinct from the colors of vertices of G. Hence, vertices of G must be colored with
at most 3 colors, giving a 3-coloring of G. Thus, we have shown that 3-COLOR <P 15251-COLOR.
This shows that 15251-COLOR is NP-hard.
Thus, 15251-COLOR is NP-complete.
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12. [10 points]

If p ≥ 2 is a prime, a p-onic number is any number x of the form

x =
a1
p

+
a2
p2

+ ... =
∞∑
k=1

ak
pk

where each ak ∈ Zp. Prove that the set of p-onic numbers is uncountable.

Solution: For any number x ∈ [0, 1], looking at the p-ary representation of x shows that x must be
a p-onic number. Hence, the set of p-onic numbers contain the uncountable set of numbers [0, 1],
and thus must be uncountable itself.

Alternatively, one could also use Cantor’s argument.
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13. [10 points]

Suppose you randomly color the vertices of the complete graph on n vertices one of k colors. What
is the expected number of paths of length c ≥ 3 such that no two adjacent vertices on the path have
the same color?

Solution: Note that the number of paths of length c is t = 1
2
·n · (n− 1) · . . . · (n− c+1). The factor

1/2 is present because every path is counted twice, once from each endpoint. For i ∈ [1, t], let Pi be
random variables denoting if no two adjacent vertices in the ith path have the same color. Then,

E[Pi] = 1 · k − 1

k
· . . . k − 1

k
=

(
k − 1

k

)c−1

.

This can be observed by sequentially coloring the vertices of the path starting from any one end.
Except for the first vertex, every vertex can be colored with all but one color (the color of its previous
vertex). Using linearity of expectation,

E[P ] =
t∑

i=1

·E[Pi] =
1

2
·

(
c−1∏
i=0

(n− i)

)
·
(
k − 1

k

)c−1

.
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