15-251: Great Theoretical Ideas In Computer Science

Recitation 13 Solutions

Euler is Even

Prove that for any $n>2, \phi(n)$ is even.
Suppose k is relatively prime to n, so $\operatorname{gcd}(k, n)=1$. We'll first show that $\operatorname{gcd}(n-k, n)=1$.
Since $\operatorname{gcd}(k, n)=1$, we know by Euler that there exist x, y so that $k x+n y=1$. Thus we have $1=k x+n y=k x+n y-n x+n x=(k-n) x+n(x+y)=(n-k)(-x)+n(x+y)$. Since x, y integers, so are $x+y$ and $-x$.
Thus we have $\operatorname{gcd}(n-k, n) \mid 1$, so $\operatorname{gcd}(n-k, n)=1$.
Now, we use this to pair off elements in Z_{n}^{*}.
First note that $\frac{n}{2} \notin Z_{n}^{*}$, since either n is odd or since $n>2, \operatorname{gcd}\left(\frac{n}{2}, n\right)=\frac{n}{2}>1$.
Now, for each $k \in Z_{n}^{*}, n-k \in Z_{n}^{*}$, and $n-k \neq k$. Thus $\phi(n)=\left|Z_{n}^{*}\right|$ is even for $n>2$.

RSA Practice

In lecture, we saw how RSA encryption is used. There are many important quantitites used in this algorithm:

- p, q : Two very large prime numbers.
- $n: n=p q$ is part of the public key
- $\phi(n)$: Since p, q prime, $\phi(n)=(p-1)(q-1)$
- $e: e$, also part of the public key, is some member of $\mathbb{Z}_{\phi(n)}^{*}$
- $d: d$, the private key, is the inverse of e in $\mathbb{Z}_{\phi(n)}^{*}$, i.e. $e d \cong_{\phi(n)} 1$
- m : This is the message that will be sent

Let $p=17, q=7, e=11$
(a) Use the extended Euclidian Algorithm to find d.

First, we must find $\phi(n) . \phi(n)=(p-1)(q-1)=16 * 6=96$. We must find d such that $11 d \equiv_{96} 1$. We have:

$$
\begin{aligned}
96 & =11 \times 8+8 \\
11 & =8 \times 1+3 \\
8 & =3 \times 2+2 \\
3 & =2 \times 1+1
\end{aligned}
$$

Now we work backwards:

$$
\begin{aligned}
1 & =3-2 \\
& =3-(8-3 \times 2)=3 \times 3-8 \\
& =(11-8) \times 3-8=(11 \times 3)-(8 \times 4) \\
& =(11 \times 3)-((96-11 \times 8) \times 4)=(11 \times 35)-(96 \times 4)
\end{aligned}
$$

Thus, $d=35$.
(b) Encrypt the message 3

First, we find n which is $p q$ which is 119 . We need to find $3^{11} \bmod 119$. This is

$$
\begin{array}{rll}
3^{11} & \equiv_{119} & 3 * 3^{5} * 3^{5} \\
& \equiv_{119} & 3 * 243 * 243 \\
& \equiv_{119} & 3 * 5 * 5 \\
& \equiv_{119} & 75
\end{array}
$$

(c) Decrypt the message 2

We need to find $2^{35} \bmod 119$. This is

$$
\begin{aligned}
& 2^{35} \equiv_{119} \quad 2^{7^{5}} \\
& \equiv_{119} \quad 128^{5} \\
& \equiv_{119} \quad 9^{5} \\
& \equiv_{119} \quad 3^{5} * 3^{5} \\
& \equiv_{119} \quad 243 * 243 \\
& \equiv_{119} 5 * 5 \\
& \equiv_{119} 25
\end{aligned}
$$

Groups

Define $\bullet: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ as follows: For all $x, y \in \mathbb{N}$, $x \bullet 3=x$
$3 \bullet y=y$
$x \bullet y=x+y$ if both $x, y \neq 3$

Is (\mathbb{N}, \bullet) a group?
For each of the four required properties of a group, prove or disprove that they hold for (\mathbb{N}, \bullet).

Closure:

For all $x, y \in \mathbb{N}, x, y$, and $x+y$ are also in \mathbb{N}. Thus closure is satisfied.
Associativity:
Not satisfied: $(1 \bullet 2) \bullet 4=3 \bullet 4=4$, but $1 \bullet(2 \bullet 4)=1 \bullet 6=7$.
Identity:
This is satisfied, because 3 is an identity. $\forall x \in \mathbb{N}, x \bullet 3=3 \bullet x=x$.
Inverses:
Not satisfied: Only 1, 2, and 3 have inverses. 0 has no inverse because $0 \bullet x$ is x for $x \neq 3$ and 0 if $x=3$. Thus there is no x such that $0 \bullet x=3$.

Orders

Let G be an abelian group with operation.
Let $x, y \in G$ have $|x|=m$ and $|y|=n$ with $\operatorname{gcd}(m, n)=1$. Show that $|x \cdot y|=m n$.
We need to show that $m n$ is the least k such that $(x \cdot y)^{k}=e$.
We have $(x \cdot y)^{m n}=x^{m n} \cdot y^{m n}$ because G is abelian. Furthermore, $x^{m n}=\left(x^{m}\right)^{n}=e^{n}=e$ and $y^{m n}=\left(y^{n}\right)^{m}=e^{m}=e$, so $(x \cdot y)^{m n}=e$.

Now, suppose $(x \cdot y)^{k}=e$. Then $e=(x \cdot y)^{m k}=x^{m k} \cdot y^{m k}=y^{m k}$, so $n \mid m k$. Similarly, $e=(x \cdot y)^{n k}=x^{n k} \cdot y^{n k}=x^{n k}$, so $m \mid n k$.

Thus $m n \mid m^{2} k$ and $m n \mid n^{2} k$, so $m n \mid \operatorname{gcd}\left(m^{2} k, n^{2} k\right)=k$. Therefore $m n \leq k$, so $|x \cdot y|=m n$.

