15-251: Great Theoretical Ideas In Computer Science

Recitation 13 Solutions

Euler is Even

Prove that for any n > 2, $\phi(n)$ is even.

Since gcd(k,n) = 1, we know by Euler that there exist x, y so that kx + ny = 1. Thus we have 1 = kx + ny = kx + ny - nx + nx = (k - n)x + n(x + y) = (n - k)(-x) + n(x + y). Since x, y integers, so are x + y and -x. Thus we have $gcd(n - k, n) \mid 1$, so gcd(n - k, n) = 1.

Suppose k is relatively prime to n, so gcd(k,n) = 1. We'll first show that gcd(n-k, n) = 1.

Now, we use this to pair off elements in Z_n^* . First note that $\frac{n}{2} \notin Z_n^*$, since either n is odd or since n > 2, $gcd(\frac{n}{2}, n) = \frac{n}{2} > 1$. Now, for each $k \in Z_n^*$, $n - k \in Z_n^*$, and $n - k \neq k$. Thus $\phi(n) = |Z_n^*|$ is even for n > 2.

RSA Practice

In lecture, we saw how RSA encryption is used. There are many important quantitites used in this algorithm:

- *p*, *q*: Two very large prime numbers.
- n: n = pq is part of the public key
- $\phi(n)$: Since p, q prime, $\phi(n) = (p-1)(q-1)$
- e: e, also part of the public key, is some member of $\mathbb{Z}^*_{\phi(n)}$
- d: d, the private key, is the inverse of e in $\mathbb{Z}^*_{\phi(n)}$, i.e. $ed \cong_{\phi(n)} 1$
- m: This is the message that will be sent

Let p = 17, q = 7, e = 11

(a) Use the extended Euclidian Algorithm to find d.

First, we must find $\phi(n)$. $\phi(n) = (p-1)(q-1) = 16 * 6 = 96$. We must find d such that $11d \equiv_{96} 1$. We have: 96 = $11 \times 8 + 8$ $11 = 8 \times 1 + 3$ $8 = 3 \times 2 + 2$ $3 = 2 \times 1 + 1$ Now we work backwards: 1 = 3 - 2 $= 3 - (8 - 3 \times 2) = 3 \times 3 - 8$ $= (11 - 8) \times 3 - 8 = (11 \times 3) - (8 \times 4)$ $= (11 \times 3) - ((96 - 11 \times 8) \times 4) = (11 \times 35) - (96 \times 4)$ Thus, d = 35.

(b) Encrypt the message 3

First, we find n which is pq which is 119. We need to find $3^{11} \mod 119$. This is $3^{11} \equiv_{119} 3 * 3^5 * 3^5$ $\equiv_{119} 3 * 243 * 243$ $\equiv_{119} 3 * 5 * 5$ $\equiv_{119} 75$

(c) Decrypt the message 2

We need to find $2^{35} \mod 119$. This is

2^{35}	\equiv_{119}	2^{7^5}
	\equiv_{119}	128^{5}
	\equiv_{119}	9^{5}
	\equiv_{119}	$3^5 * 3^5$
	\equiv_{119}	243 * 243
	\equiv_{119}	5 * 5
	\equiv_{119}	25

Groups

Define $ullet: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ as follows: For all $x, y \in \mathbb{N}$, $x \bullet 3 = x$

 $3 \bullet y = y$ $x \bullet y = x + y$ if both $x, y \neq 3$

Is (\mathbb{N}, \bullet) a group?

For each of the four required properties of a group, prove or disprove that they hold for (\mathbb{N}, \bullet) .

Closure:

For all $x, y \in \mathbb{N}$, x, y, and x + y are also in \mathbb{N} . Thus closure is satisfied.

Associativity:

Not satisfied: $(1 \bullet 2) \bullet 4 = 3 \bullet 4 = 4$, but $1 \bullet (2 \bullet 4) = 1 \bullet 6 = 7$.

Identity:

This is satisfied, because 3 is an identity. $\forall x \in \mathbb{N}, x \bullet 3 = 3 \bullet x = x$.

Inverses:

Not satisfied: Only 1, 2, and 3 have inverses. 0 has no inverse because $0 \bullet x$ is x for $x \neq 3$ and 0 if x = 3. Thus there is no x such that $0 \bullet x = 3$.

Orders

Let G be an abelian group with operation \cdot . Let $x, y \in G$ have |x| = m and |y| = n with gcd(m, n) = 1. Show that $|x \cdot y| = mn$.

We need to show that mn is the least k such that $(x \cdot y)^k = e$.

We have $(x \cdot y)^{mn} = x^{mn} \cdot y^{mn}$ because G is abelian. Furthermore, $x^{mn} = (x^m)^n = e^n = e$ and $y^{mn} = (y^n)^m = e^m = e$, so $(x \cdot y)^{mn} = e$.

Now, suppose $(x \cdot y)^k = e$. Then $e = (x \cdot y)^{mk} = x^{mk} \cdot y^{mk} = y^{mk}$, so n|mk. Similarly, $e = (x \cdot y)^{nk} = x^{nk} \cdot y^{nk} = x^{nk}$, so m|nk.

Thus $mn|m^2k$ and $mn|n^2k$, so $mn| \operatorname{gcd}(m^2k, n^2k) = k$. Therefore $mn \leq k$, so $|x \cdot y| = mn$.