Consider the problem of proving that $\forall n \geq 0,1+2+\ldots+n=\frac{n(n+1)}{2}$ by induction.
Define the statement $S_{n}=" 1+2+\ldots+n=\frac{n(n+1)}{2} "$. We want to prove $\forall n \geq 0, S_{n}$.

1 An Inductive Proof

Base Case: $\frac{0(0+1)}{2}=0$, and hence S_{0} is true.
I.H.: Assume that S_{k} is true for some $k \geq 0$.

Inductive Step: We want to prove the statement $S(k+1)$. Note that

$$
\begin{align*}
1+2+\ldots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) \tag{byI.H.}\\
& =(k+1)\left(\frac{k}{2}+1\right) \\
& =\frac{(k+1)(k+2)}{2} .
\end{align*}
$$

And hence S_{k+1} is true.

2 Common Errors and Pitfalls

1. (S_{n} is a statement, not a value) You cannot make statements like $S_{k}+(k+1)=S_{k+1}$, much the same as you cannot add k to the statement "The earth is round".

Mistake:

I.H.: Assume that S_{k} is true. Inductive Step:

$$
\begin{aligned}
\sum_{i=1}^{k+1} i & =k+1+\sum_{i=1}^{k} i \\
& =k+1+S_{k} \\
& =\cdots
\end{aligned}
$$

Logical propositions like S_{k} can't be added to numbers. Please don't equate propositions and arithmetic formulas.
2. (Proof going the Wrong Way) Make sure you use S_{k} to prove S_{k+1}, and not the other way around. Here is a common (wrong!) inductive step:

Mistake:

Inductive Step:

$$
\begin{aligned}
1+2+\ldots+k+(k+1) & =(k+1)(k+2) / 2 \\
k(k+1) / 2+(k+1) & =(k+1)(k+2) / 2 \\
(k+1)(k+2) / 2 & =(k+1)(k+2) / 2
\end{aligned}
$$

The proof above starts off with S_{k+1} and ends using S_{k} to prove an identity, which does not prove anything. Please make sure you do not assume S_{k+1} in an effort to prove it!
3. (Assuming too much) Make sure you dont assume everything in the I.H.

Mistake:

I.H.: Assume that S_{k} is true for all k.

You want to prove the statement S_{n} true for all n, and if you assume it is true, there is nothing left to prove! (Remember that the " S_{n} is true for all n " is the same as saying " S_{k} is true for all k ".)

Correct Way:

I.H.: Assume that $S(k)$ is true for some k.
or, if you want to use all-previous ("strong") induction
I.H.: Assume for some k that $S(j)$ is true for all $j \leq k$.
4. (The case of the missing n) Consider the following I.H. and inductive step:

Mistake:

I.H.: Assume that S_{k} is true for all $k \leq n$.

Inductive Step: We want to prove S_{k+1}.
What is k ? Where has n disappeared? The induction hypothesis is saying in shorthand that $S_{1}, S_{2}, \ldots, S_{n-1}, S_{n}$ are all true for some n. Note that rewriting the I.H. in this way shows that k was a red herring: you really want to prove S_{n+1}, not S_{k+1}.

Correct Way:

I.H.: Assume that S_{k} is true for all $k \leq n$.

Inductive Step: We want to prove S_{n+1}.
5. (Extra stuff in the I.H.) Consider the following I.H.

Mistake:

I.H.: Assume that S_{k} is true for all $k \leq n$. Then $\mathbf{S}_{\mathbf{n}+\boldsymbol{1}}$.

Note that entire thing has been made part of the hypothesis, including the bolded part. The second part "Then S_{n+1} " is what you want to show in the inductive step; it is not part of the induction hypothesis. You need to distinguish between the Claim and the Induction Hypothesis. The Claim is the statement you want to prove (i.e., $\forall n \geq 0, S_{n}$), whereas the Induction Hypothesis is an assumption you make (i.e., $\forall 0 \leq k \leq n, S_{n}$), which you use to prove the next statement (i.e., S_{n+1}). The I.H. is an assumption which might or might not be true (but if you do the induction right, the induction hypothesis will be true).

Correct Way:

I.H.: Assume that S_{k} is true for all $k \leq n$.
6. (The Wrong Base Case.) Note that you want to prove S_{0}, S_{1}, etc., and hence the base case should be S_{0}.

Mistake:

Base Case: $\frac{1(1+1)}{2}=1$, and hence S_{1} is true.
Even if the rest of the proof works fine, you would have shown that $S_{1}, S_{2}, S_{3}, \cdots$ are all correct. You haven't shown that S_{0} is true.
7. (Assuming too little: Too few Base Cases.)

Suppose you were given a function $X(n)$ and need to show that the statement S_{n} that "the Fibonacci number $F_{n}=X(n)$ " for all $n \geq 0$.

Mistake:

Base Case: for $n=0, F_{0}=X(0)$ blah blah. Hence S_{0} is true.
I.H.: Assume that S_{k} is true for all $k \leq n$.

Induction Step: Now $F_{n}=F_{n-1}+F_{n-2}=X(n-1)+X(n-2)$ (because S_{n-1} and S_{n-2} are both true), etc.

If you are using S_{n-1} and S_{n-2} to prove $T(n)$, then you better prove the base case for S_{0} and S_{1} in order to prove S_{2}. Else you have shown S_{0} is true, but have no way to prove S_{1} using the above proof- S_{0} is not a base case, and to use induction, we'd need S_{0} and S_{-1}. But there is no $S_{-1}!!!$
Remember the domino principle: the above induction uses the fact that "if two consecutive dominoes fall, the next one will fall". To now infer that all the dominoes fall, you must show that the first two dominoes fall. And hence you need two base cases.

