

Final Exam and Grades

Final Exam

Tue., December 10
8:30am-11:30am
PH 100

Final Exam

Format (same as midterms):
-T/F, mult. choice, short questions
-HW question
-Long questions (with formal proofs)
We allow a cheat sheet, any font size.
Review: Sun, Dec. 8 at 7pm, 4307 GHC
Suggest topics for review! We Had Some Lectures

Final Exam
Format (same as midterms):
•T/F, mult. choice, short questions
•HW question
-Long questions (with formal proofs)
We allow a cheat sheet, any font size.
Review: Sun, Dec. 8 at $7 \mathrm{pm}, 4307 \mathrm{GHC}$
Suggest topics for review!
We'll post a practice exam.

Outline
Markov Chains
Transition matrix
Invariant distribution
PageRank
Random walk on graphs
Randomized Algorithm

Markov Chain - Definition

- Directed graph, self-loops OK
- Always assumed strongly connected in 251
- Each edge labeled by a positive probability
- At each node ("state"), the probabilities on outgoing edges sum up to 1 .

Markov Chain - Example

Rows sum to 1
Suppose there are n states.
$n \times n$ transition matrix M :

$$
M_{i, j}=\operatorname{Pr}[i \rightarrow j \text { in } 1 \text { step }]
$$

$$
M=\left(\begin{array}{llll}
0 & .2 & .7 & .1 \\
0 & .6 & .4 & 0 \\
0 & .1 & 0 & .9 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

("stochastic matrix")

Markov Chain - Notation

For time $t=0,1,2,3, \ldots$
X_{t} denotes the state (node) at time t.
Somebody decides on X_{0}.
Then $X_{1}, X_{2}, X_{3}, \ldots$ are random variables.

$$
\begin{aligned}
& X_{0}=W \\
& X_{1}=C \\
& x_{2}=F \\
& x_{3}=W
\end{aligned}
$$

$$
\text { What is } \operatorname{Pr}\left[X_{3}=j \mid X_{0}=i\right] \text { ? }
$$

Conditioning on X_{2}, using Law of Total Prob...

$$
\begin{aligned}
& \sum_{k=1}^{n} \operatorname{Pr}\left[X_{2}=k \mid X_{0}=i\right] \operatorname{Pr}\left[X_{3}=j \mid X_{2}=k\right]= \\
& =\sum_{k=1}^{n} M^{2}[i, k] M[k, j]=M^{3}[i, j]
\end{aligned}
$$

In general, $\operatorname{Pr}\left[X_{n}=j \mid X_{0}=i\right]=M^{n}[i, j]$.

In general, if $X_{0} \sim \pi_{0}$, what is $\operatorname{Pr}\left[X_{1}=j\right]$?
Conditioning on X_{0}, using Law of Total Prob...
$\sum_{k=1}^{n} \operatorname{Pr}\left[X_{0}=k\right] \operatorname{Pr}\left[X_{1}=j \mid X_{0}=k\right]=$
$=\sum_{k=1}^{n} \pi_{0}[k] M[k, j]=\left(\pi_{0} \bullet M\right)[j]$

$$
\left(\begin{array}{lll}
\left(\pi_{0}\right.
\end{array}\right)\left[\begin{array}{l}
\text { vector } \\
M
\end{array}\right)
$$

I.e., the distribution vector for X_{1} is $\pi_{1}=\pi_{0} \cdot M$ And, the distribution vector for X_{n} is $\pi_{n}=\pi_{0} \cdot M^{n}$
In general, if $X_{0} \sim \pi_{0}$, what is $\operatorname{Pr}\left[X_{1}=j\right]$?
Conditioning on X_{0}, using Law of Total Prob...
$\sum_{k=1}^{n} \operatorname{Pr}\left[X_{0}=k\right] \operatorname{Pr}\left[X_{1}=j \mid X_{0}=k\right]=$
$=\sum_{k=1}^{n} \pi_{0}[k] M[k, j]=\left(\pi_{0} \bullet M\right)[j] \quad\left(\pi_{0} \quad J \quad\left(\begin{array}{r}M\end{array}\right)\right.$
I.e., the distribution vector for X_{1} is $\pi_{1}=\pi_{0} \cdot M$
And, the distribution vector for X_{n} is $\pi_{n}=\pi_{0} \cdot M^{n}$
(aka the Stationary Distribution)

Recall: $M^{n}[i, j]=\operatorname{Pr}[i \rightarrow j$ in exactly n steps $]$

$$
\begin{gathered}
M^{2}=\left(\begin{array}{ccc}
.34 & .3 & .36 \\
.45 & .19 & .36 \\
.45 & .3 & .25
\end{array}\right) \quad M^{7}=\left(\begin{array}{ccc}
.405413 & .269831 & .324756 \\
.405546 & .270497 & .323957 \\
.40528 & .27063 & .32409
\end{array}\right) \\
M^{15}=\left(\begin{array}{lll}
.405405 & .27027 & .324324 \\
.405405 & .27027 & .324324 \\
.405405 & .27027 & .324324
\end{array}\right)
\end{gathered}
$$

$$
M^{15}=\left(\begin{array}{lll}
.405405 & .27027 & .324324 \\
.405405 & .27027 & .324324 \\
.405405 & 27027 & 324324
\end{array}\right)
$$

This limiting row (assuming the limit exists) is called the invariant distribution π.
"In the long run,
40.6% of the time I'm working,
27.0% of the time I'm on coffee break,
32.4% of the time I'm on Facebook."

Invariant Distribution Calculation

Raising M to a large power is annoying.
" π is invariant": if you start in this distribution and you take one more step, you're still in the distribution.

$$
\text { i.e., } \quad \pi=\pi M
$$

For fixed M, this yields a system of equations.

$$
\begin{gathered}
\pi=\pi \mathrm{M} \\
\left(\begin{array}{c}
\pi[\mathrm{W}] \pi[\mathrm{C}] \pi[\mathrm{F}]
\end{array}\right)=\left(\begin{array}{ll}
\pi[\mathrm{W}] \pi[\mathrm{C}] & \pi[\mathrm{F}]
\end{array}\right)\left(\begin{array}{ccc}
.4 & .6 & 0 \\
.3 & .1 & .6 \\
.5 & 0 & .5
\end{array}\right) \\
\pi[\mathrm{W}]=.4 \pi[\mathrm{~W}]+.3 \pi[\mathrm{C}]+.5 \pi[\mathrm{~F}] \\
\pi[\mathrm{C}]=.6 \pi[\mathrm{~W}]+.1 \pi[\mathrm{C}]+0 \pi[\mathrm{~F}] \\
\pi[\mathrm{F}]=0 \pi[\mathrm{~W}]+.6 \pi[\mathrm{C}]+.5 \pi[\mathrm{~F}] \\
\text { And we need to add another equation } \\
\text { (in order to get a unique solution) } \\
1=\pi[\mathrm{W}]+\pi[\mathrm{C}]+\pi[\mathrm{F}]
\end{gathered}
$$

Fundamental Theorem

Given a (finite, strongly connected) Markov Chain with
transition matrix M, there is a unique invariant distribution π satisfying $\pi=\pi \mathrm{K}$.
$\pi[\mathrm{W}]=0.405405, \pi[C]=0.27027, \pi[\mathrm{~F}]=0.324324$

Fundamental Theorem

... unless the chain has some stupid "periodicity"

No limiting dist., but $\pi=\left(\frac{1}{2} \frac{1}{2}\right)$ is still invariant.

Expected Time from u to u

In a Markov Chain with invariant distribution π, suppose $\pi[u]=1 / 3$.
If you walked for N steps, you would expect to be at state u about N/3 times.
The average time between successive visits to u would be about $\frac{\mathrm{N}}{\mathrm{N} / 3}=3$.

Not hard to turn this into a theorem.

Mean First Recurrence Theorem

In a Markov Chain with invariant distribution π,

$$
E[\# \text { steps to from } u \text { to } u]=\frac{1}{\pi[u]}
$$

Interlude: Altavista

1997: Web search was horrible. You search for "CMU", it finds all the pages containing "CMU" \& sorts by \# occurrences.

- - -

Noman
Interlude: Altavista
1997: Web search was horrible. You search for
"CMU", it finds all the pages containing "CMU" \&
sorts by \# occurrences.
namen

Markov Chain Summary

$M[i, j]=\operatorname{Pr}[i \rightarrow j$ in 1 step $]$, transition matrix
$M^{n}[i, j]=\operatorname{Pr}[i \rightarrow j$ in exactly n steps $]$
If π_{\dagger} is distribution at time $t, \pi_{\dagger}=\pi_{0} M$
\exists a unique invariant distribution π s.t. $\pi=\pi M$
$E[\#$ steps to go from u to $u]=\frac{1}{\pi[u]}$

Interlude: PageRank

Sites should be considered important not only if they are linked to by many others, but also if they link to many others.

Billionaires

Jon Kleinberg

Nevanlinna Prize, 10k euro

> Random walks on undirected graphs

Connected undirected graph.
Each step: go to a random neighbor.

What is the transition matrix M ?

What is the invariant distribution π ?

Assuming no "stupid periodicity", same as the limiting distribution.
(periodicity iff bipartite, actually)
Higher degree
\equiv higher limiting prob?

Could $\pi[u]$ just be proportional to degree d_{u} ?

What is the transition matrix M ?

$$
\text { Adjacency matrix: } \quad \text { Transition matrix: }
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right) \quad \begin{aligned}
& \div d_{1} \\
& \div d_{2} \\
& \div d_{3} \\
& \div d_{4}
\end{aligned} \quad M=\left(\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 2 & 0 & 1 / 2 & 0
\end{array}\right)
$$

Theorem: In random walk on undirected graph $G=(n, m)$, inv. distribution $\pi=\left(\begin{array}{llll}\frac{d_{1}}{2 m} & \frac{d_{2}}{2 m} & \cdots & \frac{d_{h}}{2 m}\end{array}\right)$

Proof: We need to verify $\pi M=\pi$.

$$
\left(\Sigma d_{i}=2 m\right)
$$

$\pi M=\left(\begin{array}{llll}\frac{d_{1}}{2 m} & \frac{d_{2}}{2 m} & \cdots & \frac{d_{n}}{2 m}\end{array}\right)\left(\begin{array}{cccc}a_{11} / d_{1} & a_{12} / d_{1} & \ldots & a_{1 n} / d_{1} \\ a_{21} / d_{2} & a_{22} / d_{2} & \ldots & a_{2 n} / d_{2} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} / d_{n} & a_{n 2} / d_{n} & \ldots & a_{n n} / d_{n}\end{array}\right)$
Consider j's row:

$$
\frac{d_{1}}{2 m} \frac{a_{1 j}}{d_{1}}+\frac{d_{2}}{2 m} \frac{a_{2 j}}{d_{2}}+\ldots+\frac{d_{n}}{2 m} \frac{a_{n j}}{d_{n}}=\frac{1}{2 m} \sum_{k=1}^{n} a_{k j}=\frac{d_{j}}{2 m}
$$

Thus,

$$
\pi M=\left(\begin{array}{llll}
\frac{d_{1}}{2 m} & \frac{d_{2}}{2 m} & \cdots & \frac{d_{n}}{2 m}
\end{array}\right)=\pi
$$

Examples		
$m=\#$ edges		
π.	$1 / 4$	$1 / 2$
$E[v->v]:$	4	2

Examples

The clique on n nodes:

$m=n(n-1) / 2$
$d_{v}=n-1$
$\pi=\left(\begin{array}{llll}1 / n 1 / n 1 / n \cdots 1 / n\end{array}\right)$
$E[v>v]=n$

Theorem: Let $G=(n, m)$ be a connected graph. Let u and v be any two vertices. Then

$$
E[\# \text { steps } u->v] \leq 2 m n \leq n^{3}
$$

Proof:
Pick a path $u, w_{1}, w_{2}, \ldots, w_{r}, v$. At most n nodes.
$E[\#$ of steps $u \rightarrow v] \leq E\left[\#\right.$ of steps $u \rightarrow w_{1} \rightarrow \cdots \rightarrow w_{r} \rightarrow v$]

$$
\begin{aligned}
& =E\left[u \rightarrow w_{1}\right]+E\left[w_{1} \rightarrow w_{2}\right]+\cdots+E\left[w_{r} \rightarrow v\right] \\
& \leq 2 m+2 m+\cdots+2 m \leq 2 m n .
\end{aligned}
$$

Examples

P_{n+1}, the path on $n+1$ nodes:

$E[\#$ steps $u->v] \leq 2 m n=2 n(n+1)=O\left(n^{2}\right)$

Examples

The clique on n nodes:

Thm: E [\# steps to hit v starting from u]
$\leq 2 m n \leq n^{3}$

Actually: \# steps to hit v starting from u \sim Geom, so expectation is $n-1$.

Connectivity problem

Given graph G, possibly disconnected, and two vertices u and v. Are u and v connected?

Easily solved in $O(m)$ time using DFS/BFS.
Requires 'marking' nodes,
hence $\geq n$ bits of memory need to be allocated.
Do it with $O(1)$ memory.

A randomized algorithm for CONN:

$$
\begin{aligned}
& \mathrm{z}:=\mathrm{u} \\
& \text { for } \mathrm{t}=1 \ldots 1000 \mathrm{n}^{3} \\
& \mathrm{z}:=\text { random-neighbor(} \mathrm{z}) \\
& \text { if } \mathrm{z}=\mathrm{v} \text {, return "YES" } \\
& \text { end for } \\
& \text { return "NO" }
\end{aligned}
$$

True answer is NO: alg. always says NO
True answer is YES: alg. says YES w/prob $\geq 99.9 \%$
Why?

A randomized algorithm

[Aleliunas,Karp,Lipton,Lovász,Rackoff in 1979]

Assume a variable can hold a number between $1 \& n$.

PROOF. Suppose u and v are indeed in the same connected component.
We do a random walk from u until we hit v.
Let $T=\#$ steps it takes, a random variable.
Then, $E[T] \leq n^{3}$, by our theorem.

$$
\begin{gathered}
\operatorname{Pr}\left[\mathrm{T}>1000 \mathrm{n}^{3}\right]=? ? ? \\
\text { Markov's Inequality: } \operatorname{Pr}[\mathrm{X} \geq \mathrm{c}] \leq \frac{\mathrm{E}[\mathrm{X}]}{c}
\end{gathered}
$$

$$
\operatorname{Pr}\left[T>1000 n^{3}\right]<0.1 \%
$$

