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Outline 

4. (Inverses) For every a  S there is  b  S s.t. 

Group 

A group G is a pair (S, ), where S is a set and  
 is a binary operation S  S → S such that: 

2.  is associative, (a  b)  c= a  (b  c) 

3. (Identity) There exists an element e  S s.t. 

e  a = a  e = a,  for all a  S  

a  b = b  a = e 

1. (Closure ) For all a and b  S, a  b S 
We often define more than one operation  on a set 

For example, in Zn we can do both 
addition and multiplication modulo n 

A ring is a set together with two operations 

Rings 

A ring R is a set together with two binary 
operations + and ×, satisfying the following 

properties: 

1. (R,+) is a commutative group 

2. × is associative 

3. The distributive laws hold in R: 

(a + b) × c = (a × c) + (b × c) 

c × (a + b) = (c × a) + (c × b) 

Rings 

Examples:   (Z, +, *) a ring 

A field F is a set together with two binary 
operations + and ×, satisfying the following 

properties: 

1. (F,+) is a commutative group 

2. (F-{0},×) is a commutative group 

3. The distributive law holds in F: 

(a + b) × c = (a × c) + (b × c) 

Fields 
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Fields 

Informally, it’s a place where you can 

add, subtract, multiply, and divide. 

Examples: 

Real numbers    ℝ 

Rational numbers  ℚ 

Complex numbers  ℂ 

 (Finite field) Integers mod prime   Zp aka Fp     
 

NON-examples: Integers ℤ 

Non-negative reals ℝ+ 

division?? 

subtraction?? 

Another Example 

Quadratic “number field” 

 ℚ( 2) = { a + b 2 : a,b  ℚ } 

Addition: (a + b 2) + (c + d 2) = (a+c) + (b+d) 2  

Multiplication:  
 (a + b 2)  (c + d 2) = (ac+2bd) + (ad+bc) 2  

Polynomials 

Polynomials 

Informally, a polynomial is an expression  

that looks like this: 

6x3 − 2.3x2 + 5x + 4.1 

x is a symbol, called a variable 

a number standing next to  

x are called a coefficient 

Polynomials 

Informally, a polynomial is an expression  

that looks like this: 

Coefficients can come from any field. 

6x3 − 2.3x2 + 5x + 4.1 

Can allow multiple variables, but we won’t. 

Set of polynomials with variable x and  

coefficients from field F is denoted F[x]. 

Polynomials – formal definition 

Let F be a field and let x be a variable symbol. 

F[x] is the set of polynomials over F,  

   defined to be expressions of the form 

 

   where each ci is in F, and cd ≠ 0. 

We call d the degree of the polynomial. 

Also, the expression 0 is a polynomial. 

   (By convention, we call its degree −∞.) 

cd xd + cd−1 xd−1 + ··· + c2 x2 + c1 x + c0 
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Adding and multiplying polynomials 

Example. 

Here are two polynomials in F11[x]    

 P(x) = x2 + 5x − 1 

Q(x) = 3x3 + 10x 

P(x) + Q(x) = 3x3 + x2 + 15x − 1 

     = 3x3 + x2 +   4x − 1  

     = 3x3 + x2 +   4x + 10 

Adding and multiplying polynomials 

Example. 

Here are two polynomials in in F11[x]       

 P(x) = x2 + 5x − 1 

Q(x) = 3x3 + 10x 

P(x) • Q(x) = (x2 + 5x − 1)(3x3 + 10x) 

    = 3x5 + 15x4 + 7x3 + 50x2 − 10x 

    = 3x5 +   4x4 + 7x3 +   6x2 +      x 

F[x] is not a field 

Polynomial addition is associative and 

commutative. 

So (F[x], +) is an abelian group! 

Polynomial multiplication is associative and 

commutative. 

Multiplication distributes over addition:   

 P(x) • (Q(x) + R(x)) = P(x) • Q(x) + P(x) • R(x) 

 

If P(x) / Q(x) were always a polynomial,  

then F[x] would be a field!    

Dividing polynomials? 

P(x) / Q(x) is not necessarily a polynomial. 

So F[x] is not quite a field. 

It’s a commutative ring 

Same with ℤ, the integers:  

it has everything except division. 

Dividing polynomials? 

ℤ has the concept of “division with remainder”: 

Given a,b∈ℤ, b≠0, can write a = q•b + r, r<b 

F[x] has the same concept: 

Given A(x),B(x)∈F[x], B(x)≠0, can write 

A(x) = Q(x)•B(x) + R(x),   

 

where deg(R(x)) < deg(B(x)).   

“Division with remainder” for polynomials 

Example: Divide 6x4+8x+1 by 2x2+4 in F11[x]  

2x2+4 6x4+8x+1 

3x2 

6x4+x2 − 

−x2+8x+1 

+5 

10x2+9 − 

8x-8 = 8x + 3 

Check: 

6x4+8x+1  

= (3x2+5)(2x2+4)+(8x+3) 
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“Division with remainder” for polynomials 

Similar to integers, you can do modular arithmetic  

with  polynomials over a field.  

For example, 

2x2 = 2 mod (x2-1) 2x2 =2 (x2-1) + 2 

x3+2x2 +x= 2x+2 mod (x2-1) 

x3+2x2+x= (x+2)(x2-1)+(2x+2) 

Enough algebraic theory. 

 

Let’s play with polynomials! 

Evaluating polynomials 

Given a polynomial P(x) ∈ F[x], 

P(a) means its evaluation at element a. 

E.g., if  P(x) = x2+3x+5  in  F11[x]         

P(6) = 62+3·6+5 = 36+18+5 = 59 = 4 

P(4) = 42+3·4+5 = 16+12+5 = 33 = 0 

Definition:    r is a root of P(x) if P(r) = 0. 

Polynomial roots 

Theorem:  

Let P(x) ∈ F[x] have degree 1. 

Then P(x) has exactly 1 root. 

Proof: 

Write P(x) = cx + d   (where c≠0). 

Then P(r) = 0 ⇔   c•r + d = 0 

    ⇔          c•r = −d 

        ⇔            r = −d/c. 

Polynomial roots 

Let P(x) ∈ F[x] have degree 2. 

Then P(x) has… how many roots?? 

E.g.:    P(x)=x2+1… 

# of roots over   F2[x]   : 1  (namely, 1) 

# of roots over F3[x]    : 0 

# of roots over  R[x]    : 0 

2  (namely, i and −i) # of roots over  C[x]     : 

The single most important theorem  

about polynomials over fields: 

A degree d  

polynomial has  

at most d roots. 
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Theorem: Over a field, for all d ≥ 0,  

degree d polynomials have at most d roots. 

Proof by induction on d∈ℕ: 

Base case:  If P(x) is degree 0 . This has 0 roots. 

Assume true for d ≥ 0.  Let P(x) have degree d+1. 

If P(x) has 0 roots: we’re done!  Else let b be a root. 

Divide with remainder: P(x) = Q(x)(x−b) + R(x).  (∗) 

deg(R) < deg(x−b) = 1, so R(x) is a constant.   

Plug x = b into (∗) to see that constant is zero 

So P(x) = Q(x)(x−b), where by IH Q has ≤ d roots. 

∴ P(x) has ≤ d+1 roots, completing the induction. 

An important corollary 

Corollary: Suppose a polynomial R(x)  F[x]  is s.t.  

(i) R has degree ≤ d and  

(ii) R has ≥  d+1 roots 

Then R must be the 0 polynomial 

Theorem: Over a field,  

degree d polynomials have at most d roots. 

Reminder: 

This is only true over a field. 

 

E.g., consider P(x) = 3x  over Z6. 

 

It has degree 1, but 3 roots:  0, 2, and 4. 

Interpolation 

Say you’re given a bunch of “data points” 

a1 

b1 

(a2,b2) (a3,b3) 

(a4,b4) 

(a5,b5) 

Can you find a (low-degree)  

polynomial which “fits the data”? 

Interpolation 

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai’s distinct). 

Theorem:   

 There is exactly one polynomial P(x)  

    of degree at most d such that  

 P(ai) = bi for all i = 1,…,d+1. 

E.g. there is a unique linear polynomial  

going through 2 points  

Theorem Proof 

There are two things to prove. 

1. There is at least one polynomial of degree 

≤ d passing through all d+1 data points. 

2. There is at most one polynomial of degree 

≤ d passing through all d+1 data points. 

Let’s prove #2 first. 
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Proof #2 

Suppose P(x) and Q(x) both do the trick. 

Let R(x) = P(x)−Q(x).   

Since deg(P), deg(Q) ≤ d we must have deg(R) ≤ d. 

But R(ai) = bi−bi = 0 for all i = 1…d+1. 

Thus R(x) has more roots than its degree. 

Thus, R(x) must be the 0 polynomial, i.e., 

P(x)=Q(x). 

 

Proof #1 

The method for constructing the polynomial 

is called Lagrange Interpolation. 

Discovered in 1795  

by J.-L. Lagrange. 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

b1 

b2 

b3 

··· 

bd 

bd+1 

Want P(x) with degree ≤ d  

such that  P(ai) = bi  ∀i. 

Special Case 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Once we solve this special case, 

the general case is very easy. 

Special Case 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Let Q(x) = (x−a2)(x−a3)···(x−ad+1) 

Degree is d.  ✔ 

Q(a2) = Q (a3) = · · · = Q (ad+1) = 0.  ✔ 

Q(a1) =?? 

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

1 

0 

0 

··· 

0 

0 

Denominator 

is a nonzero 

field element 

Numerator  

is a deg. d  

polynomial 

Call this the selector polynomial for a1. 

)a)...(aa(a

)a)...(xa(x

)Q(a

Q(x)
(x)S

1d121

1d2

1
1
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Another special case 

a1 

a2 

a3 

··· 

ad 

ad+1 

0 

1 

0 

··· 

0 

0 

)a)...(aa)(aa(a

)a)...(xa)(xa-(x
(x)S

1d23212

1d31
2

Lagrange Interpolation 

a1 

a2 

a3 

··· 

ad 

ad+1 

0 

0 

0 

··· 

0 

1 

)a)...(aa(a

)a)...(xa(x
(x)S

d1d11d

d1
1d

Great!  But what about this data? 

a1 

a2 

a3 

··· 

ad 

ad+1 

b1 

b2 

b3 

··· 

bd 

bd+1 

P(x) = b1 S1(x) + … + bd+1 Sd+1(x) 

This formula is called Lagrange’s Interpolation 

Recall: Lagrange Interpolation 

Let pairs (a1,b1), (a2,b2), …, (ad+1,bd+1) 

from a field F be given (with all ai’s distinct). 

Theorem:   

 There is exactly one polynomial P(x)  

    of degree at most d such that  

 P(ai) = bi for all i = 1,…,d+1. 

Correspondence between a set of points  

and a polynomial 

Application: 

Error-correcting codes 

Sending messages on a noisy channel 

Alice Bob 

“ message ” 

The channel may corrupt up to k symbols. 

How can Alice still read the message? 
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Sending messages on a noisy channel 

The channel may erase (replace by ?) up to k symbols. 

Let’s say messages are sequences 

118  114  120  85  66  78 

118  114  ?  85  ?  78 

noisy channel 

How to correct the errors? 

How to even detect that there are errors? 

Repetition code 

118  114  120  85  66  78 

Noisy channel 

Have Bob repeat each symbol k+1 times. 

118  118   118  114  114  114  120  120  120  85  85  85  66  66  66  78  78  78 

becomes 

118  118   118   ?   ?  114  120  120  120  85  85  85  66  66  66  78  78  78 

If at most k errors, Alice can figure out each symbol. 

This is pretty wasteful! 

To send message of d+1 symbols and 

guard against k errors, we had 

to send (d+1)(k+1) total symbols. 

Can we do better? 

Enter polynomials 

Say Bob’s message is d+1 elements from 

118  114  120  85  66  78 

Bob thinks of it as the coefficients of a  

degree d polynomial P(x) ∈ F257[x] 

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78 

Bob sends the polynomial P(x). 
How?? 

Send it in the Values Representation! 

Bob sends P(x)’s values on d+k+1 inputs: 

P(1), P(2), P(3), …, P(d+k+1) 

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78 

This is called the Reed–

Solomon encoding. 

Reed–Solomon encoding 

Bob sends P(x)’s values on d+k+1 inputs: 

P(1), P(2), P(3), …, P(d+k+1) 

P(x) = 118x5 + 114x4 + 120x3 + 85x2 + 66x + 78 

If there are at most k errors, then 

Alice still knows P’s value on d+1 points. 

Alice recovers P(x) using Lagrange Interpolation! 
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Application of Reed–Solomon encoding 

Storage devices (CD, DVD, Barcodes, etc) 
Mobile communications 
Satellite communications 
Digital television / DVB 
High-speed modems. 

Finite Fields 

Polynomial Ring 

Lagrange Interpolation 

Reed–Solomon encoding 

Here’s What You 
Need to Know… 


