

Group

A group G is a pair (S, \bullet) , where S is a set and • is a binary operation $S \times S \rightarrow S$ such that:

- 1. (Closure) For all a and $b \in S,$ a \bullet $b {\in} S$
- 2. ♦ is associative, (a b) c= a (b c)
- 3. (Identity) There exists an element e \in 5 s.t.

 $e \bullet a = a \bullet e = a, \text{ for all } a \in S$

4. (Inverses) For every $a \in S$ there is $b \in S$ s.t.

 $a \bullet b = b \bullet a = e$

Rings

We often define more than one operation on a set

For example, in Z_n we can do both addition and multiplication modulo n

A ring is a set together with two operations

Rings

A ring R is a set together with two binary operations + and ×, satisfying the following properties:

- 1. (R,+) is a commutative group
- 2. × is associative
- 3. The distributive laws hold in R:
 - $(a + b) \times c = (a \times c) + (b \times c)$ $c \times (a + b) = (c \times a) + (c \times b)$

Examples: (Z, +, *) a ring

Fields

A field F is a set together with two binary operations + and ×, satisfying the following properties:

- 1. (F,+) is a commutative group
- 2. (F-{0},×) is a commutative group
- 3. The distributive law holds in F: $(a + b) \times c = (a \times c) + (b \times c)$

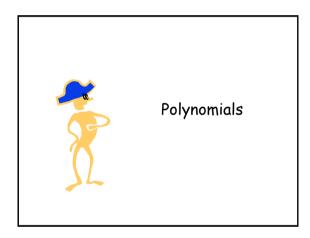
	Fields	
Informally, it's a place where you can add, subtract, multiply, and divide.		
Examples:		
Real nu	nbers	R
Rational numbers		Q
Complex numbers		C
(Finite field) I	integers mod <i>prime</i>	Z_{p} aka \mathbb{F}_{p}
NON-examples:	Integers $\mathbb Z$	division??
No	n-negative reals \mathbb{R}^{*}	subtraction??

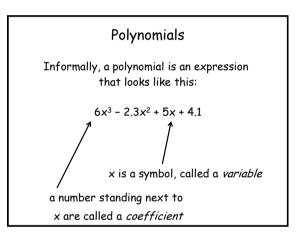
Another Example

Quadratic "number field" $\mathbb{Q}(\sqrt{2}) = \{ a + b \sqrt{2} : a, b \in \mathbb{Q} \}$

<u>Addition</u>: $(a + b \sqrt{2}) + (c + d \sqrt{2}) = (a+c) + (b+d) \sqrt{2}$

<u>Multiplication</u>: $(a + b \sqrt{2}) \bullet (c + d \sqrt{2}) = (ac+2bd) + (ad+bc) \sqrt{2}$





Polynomials

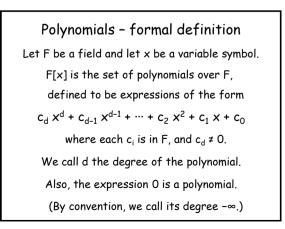
Informally, a polynomial is an expression that looks like this:

$$6x^3 - 23x^2 + 5x + 41 \in \mathbb{R}[X]$$

Coefficients can come from any *field*.

Can allow multiple variables, but we won't.

Set of polynomials with variable x and coefficients from field F is denoted F[x].



Adding and multiplying polynomials

Example.

Here are two polynomials in $\mathbb{F}_{11}[x]$

$$P(x) = x^{2} + 5x - 1$$

$$Q(x) = 3x^{3} + 10x$$

$$P(x) + Q(x) = 3x^{3} + x^{2} + 15x - 1$$

$$= 3x^{3} + x^{2} + 4x - 1$$

$$= 3x^{3} + x^{2} + 4x + 10$$

Adding and multiplying polynomials Example. Here are two polynomials in in $\mathbb{F}_{11}[x]$ $P(x) = x^2 + 5x - 1$ $Q(x) = 3x^3 + 10x$

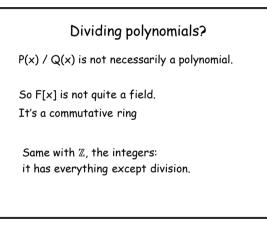
$$P(x) \cdot Q(x) = (x^{2} + 5x - 1)(3x^{3} + 10x)$$

= 3x⁵ + 15x⁴ + 7x³ + 50x² - 10x
= 3x⁵ + 4x⁴ + 7x³ + 6x² + x

F[x] is not a field

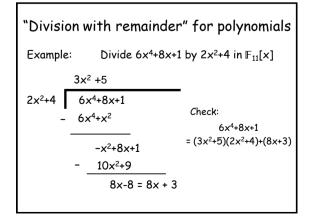
Polynomial addition is associative and commutative. So (F[x], +) is an abelian group! Polynomial multiplication is associative and commutative. Multiplication distributes over addition: $P(x) \cdot (Q(x) + R(x)) = P(x) \cdot Q(x) + P(x) \cdot R(x)$

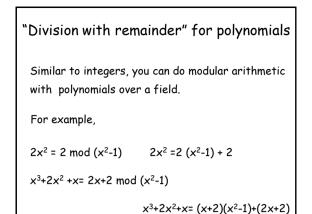
If P(x) / Q(x) were always a polynomial, then F[x] would be a field!



Dividing polynomials? \mathbb{Z} has the concept of "division with remainder": Given $a,b\in\mathbb{Z}$, $b\neq0$, can write $a = q\cdot b + r$, r < b F[x] has the same concept: Given $A(x),B(x)\in F[x]$, $B(x)\neq0$, can write $A(x) = Q(x)\cdot B(x) + R(x)$,

where deg(R(x)) < deg(B(x)).





Enough algebraic theory.

Let's play with polynomials!

Evaluating polynomials

Given a polynomial P(x) ∈ F[x], P(a) means its evaluation at element a.

E.g., if $P(x) = x^2+3x+5$ in $\mathbb{F}_{11}[x]$

 $P(6) = 6^2 + 3 \cdot 6 + 5 = 36 + 18 + 5 = 59 = 4$

 $P(4) = 4^2 + 3 \cdot 4 + 5 = 16 + 12 + 5 = 33 = 0$

Definition: r is a root of P(x) if P(r) = 0.

Polynomial roots Theorem: Let $P(x) \in F[x]$ have degree 1. Then P(x) has exactly 1 root. Proof: Write P(x) = cx + d (where $c \neq 0$). Then P(r) = 0 \Leftrightarrow c·r + d = 0 c•r = -d ⇔ r = -d/c. ⇔

Polynomial roots

Let $P(x) \in F[x]$ have degree 2. Then P(x) has... how many roots??

E.g.: P(x)=x²+1...

of roots over $\mathbb{C}[x]$: 2 (namely, i and -i) # of roots over $\mathbb{R}[x]$: 0

of roots over $\mathbb{F}_2[x]$: 1 (namely, 1)

of roots over $\mathbb{F}_3[x]$: 0

The single most important theorem about polynomials over fields:

A degree d polynomial has <u>at most</u>d roots.

<u>Theorem</u>: Over a field, for all $d \ge 0$, degree d polynomials have at most d roots. Proof by induction on $d\in\mathbb{N}$: Base case: If P(x) is degree 0. This has 0 roots. Assume true for $d \ge 0$. Let P(x) have degree d+1. If P(x) has 0 roots: we're done! Else let b be a root. Divide with remainder: P(x) = Q(x)(x-b) + R(x). (*) deg(R) < deg(x-b) = 1, so R(x) is a constant. Plug x = b into (*) to see that constant is zero So P(x) = Q(x)(x-b), where by IH Q has \le d roots. \therefore P(x) has \le d+1 roots, completing the induction.

An important corollary

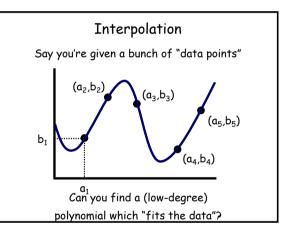
<u>Corollary</u>: Suppose a polynomial R(x) ∈ F[x] is s.t. (i) R has degree ≤ d and (ii) R has ≥ d+1 roots Then R must be the O polynomial

Theorem: Over a field, degree d polynomials have at most d roots. Reminder:

This is only true over a field.

E.g., consider P(x) = 3x over Z_6 .

It has degree 1, but 3 roots: 0, 2, and 4.



Interpolation

Let pairs (a_1,b_1) , (a_2,b_2) , ..., (a_{d+1},b_{d+1}) from a field F be given (with all a_i 's distinct).

<u>Theorem:</u>

There is exactly one polynomial P(x)of degree at most d such that $P(a_i) = b_i$ for all i = 1,...,d+1.

E.g. there is a unique linear polynomial going through 2 points

Theorem Proof

There are two things to prove.

- There is at *least* one polynomial of degree ≤ d passing through all d+1 data points.
- 2. There is at *most* one polynomial of degree < d passing through all d+1 data points.

Let's prove #2 first.

Proof #2

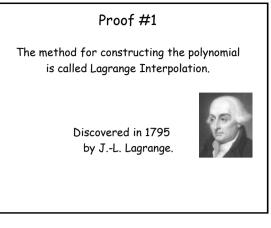
Suppose P(x) and Q(x) both do the trick. Let R(x) = P(x)-Q(x).

Since deg(P), deg(Q) \leq d we must have deg(R) \leq d.

But $R(a_i) = b_i - b_i = 0$ for all i = 1...d+1.

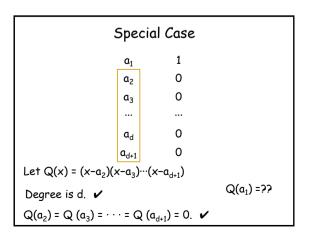
Thus R(x) has more roots than its degree.

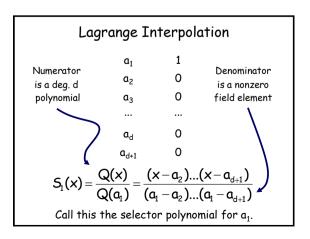
Thus, R(x) must be the 0 polynomial, i.e., P(x)=Q(x).



Lagrange Interpolation		
a ₁	b ₁	
a ₂	b ₂	
a ₃	b ₃	
a _d	b _d	
a _{d+1}	b _{d+1}	
Want P(x) with degree ≤ d such that P(a;) = b; ∀i.		

Special Case		
a ₁	1	
a ₂	0	
a ₃	0	
a _d	0	
a _{d+1}	0	
Once we solve this special case, the general case is very easy.		



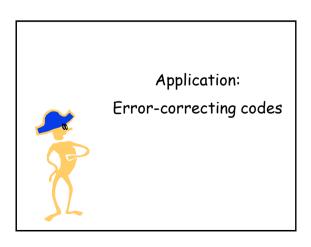


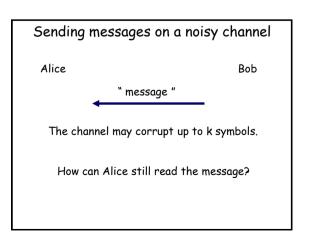
Another special case		
a ₁	0	
a ₂	1	
a ₃	0	
a _d	0	
a _{d+1}	0	
$S_2(x) = \frac{(x-a_1)(x-a_2)}{(a_2-a_1)(a_2-a_2)}$	$(a_3)(x-a_{d+1})$ (a_2-a_{d+1}))

Lagrange Interpolation		
a ₁	0	
a ₂	0	
a ₃	0	
	•••	
a _d	0	
a _{d+1}	1	
$S_{d+1}(x) = \frac{(x-a)}{(a_{d+1}-a)}$	$a_1)(x-a_d)$ $a_1)(a_{d+1}-a_d)$)

Great!	But what	about	this data?
	a ₁	b ₁	
	a ₂	b ₂	
	a ₃	b3	
	a_d	b_d	
	a _{d+1}	b _{d+1}	
P(x) =	b ₁ S ₁ (x) +	+ b _{d+1} :	5 _{d+1} (x)
This formula	is called Lo	agrange	's Interpolation

Recall: Lagrange Interpolation
Let pairs (a_1,b_1), (a_2,b_2),, (a_{d+1},b_{d+1}) from a field F be given (with all a_i 's distinct).
<u>Theorem:</u>
There is exactly one polynomial P(x)
of degree at most d such that
P(a _i) = b _i for all i = 1,,d+1.
Correspondence between a set of points
and a polynomial





Sending messages on a noisy channel

Let's say messages are sequences

118 114 120 85 66 78

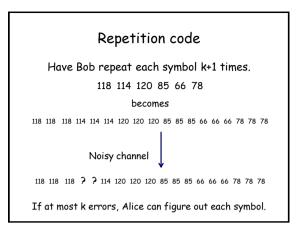
noisy channel

118 114 ? 85 ? 78

The channel may erase (replace by ?) up to k symbols.

How to correct the errors?

How to even detect that there are errors?



This is pretty wasteful!

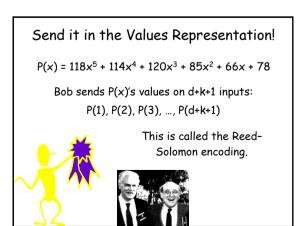
To send message of d+1 symbols and guard against k errors, we had to send (d+1)(k+1) total symbols.

Can we do better?

Enter polynomials Say Bob's message is d+1 elements from 118 114 120 85 66 78 Bob thinks of it as the coefficients of a degree d polynomial P(x) ∈ F₂₅₇[x] P(x) = 118x⁵ + 114x⁴ + 120x³ + 85x² + 66x + 78

Bob sends the polynomial P(x).

How??



Reed-Solomon encoding

 $P(x) = 118x^5 + 114x^4 + 120x^3 + 85x^2 + 66x + 78$

Bob sends P(x)'s values on d+k+1 inputs: P(1), P(2), P(3), ..., P(d+k+1)

If there are at most k errors, then Alice still knows P's value on d+1 points.

Alice recovers P(x) using Lagrange Interpolation!

Application of Reed-Solomon encoding

Storage devices (CD, DVD, Barcodes, etc) Mobile communications Satellite communications Digital television / DVB High-speed modems.

Finite Fields Polynomial Ring Lagrange Interpolation Reed-Solomon encoding

Here's What You Need to Know...