

Upcoming Interview? • How the World's Smartest Company Selects the Most Creative Thinkers • **How Would OU MOVE NOUNT FUJIO** • **Company** Selects the Most Creative Thinkers

Outline

Groups Generators Euler's theorem Fermat's little theorem Diffie-Hellman Key Exchange RSA algorithm

Z_n = {0, 1, 2, ..., n-1}

Define $+_n$: a $+_n$ b = a + b (mod n)

Define -_n : a -_nb = a +_n(-b)

(-b) is an additive inverse $b +_n (-b) = 0$

Special element 0 is called an identity element

Group (1854, Cayley)

A group G is a pair (S, \blacklozenge) , where S is a set and \blacklozenge is a binary operation $S \times S \rightarrow S$ such that:

- 1. (Closure) For all a and $b \in S, a \blacklozenge b \in S$
- 2. ♦ is associative, (a ♦ b) ♦ c= a ♦ (b ♦ c)
- 3. (Identity) There exists an element $e \in$ 5 s.t.

 $e \diamond a = a \diamond e = a$, for all $a \in S$

4. (Inverses) For every $a \in S$ there is $b \in S$ s.t.

 $a \diamond b = b \diamond a = e$

Commutative or "Abelian" Groups

If $G = (S, \mathbf{A})$ and \mathbf{A} is commutative, then

G is called a commutative group

remember, "commutative" means

 $a \diamond b = b \diamond a$ for all a, b in S

Some examples...

- $(Z_n, +_n)$ is a group
- (Z, +) is a group
- (N, +) is not a group
- $(Z_n, *_n)$ is not a group

$$Z_n^* = \{x \in Z_n \mid GCD(x,n) = 1\}$$

(Z*_n, *_n) is a group

Some properties of groups...

Identity Is Unique

Theorem: A group has exactly one identity element

Proof:

Suppose $e \neq f$ are both identities of $G=(S, \blacklozenge)$

Then f = e + f = e. Contradiction!

We will always denote an identity by e.

Inverses Are Unique

Theorem: Every element in a group has a unique inverse

Proof:

Suppose $b \neq c$ are both inverses of a.

Then b = b + e = b + (a + c) = (b + a) + c = c

Contradiction!

More generators for $(Z_n, +_n)$

Consider (Z₄,+₄) 2+0=2: 2+2=0: 2+2+2=2: 2+2+2=0

3+0=3; 3+3=2; 3+3+3=1; 3+3+3+3=0

3 is a generator, but 2 is not.

Claim: Any $a \in Z_n$ s.t. GCD(a,n)=1 generates (Z_n ,+)

Def: The order of an element g is the least k s.t. g^k = e

$Z^{\bigstar}_{n} \texttt{=} \{x \in Z_{n} \mid \textit{GCD}(x,n)\texttt{=}1\}$

 $g \in (Z^{\star}_n, {}^{\star}_n)$ is a generator if the powers of g hit every element of Z_n

This will mean that Z_p^* has an alternative representation as the powers of g: {g, g², g³,..., g^{p-1}}. Example, $(\mathbb{Z}_{n}^{*}, *_{n}^{*})$ $\mathbb{Z}_{7}^{*} = \{1, 2, 3, 4, 5, 6\}$ $2^{0} = 1; 2^{1} = 2; 2^{2} = 4; 2^{3} = 1$ $3^{0}=1; 3^{1} = 3; 3^{2} = 2; 3^{3} = 6; 3^{4} = 4; 3^{5} = 5; 3^{6} = 1$

3 is a generator, but 2 is not.

5 is another generator

Generator Theorem:

If p prime, then $(Z_n^*, *_n)$ has a generator g.

In fact, it has $\phi(p-1)$ generators.

Proof is not given here.

Open Problem (Gauss)

Is there an efficient algorithm, given a prime p, to find a single generator in Z_p^* ?

That is, for every integer $a\in {\bm Z_p}^\star$, find an integer k such that $g^k\equiv a\ (mod\ p)$.

Such k is called the $\ \underline{\text{discrete logarithm}}$ of a to the base g modulo p.

Euler Phi Function $\phi(n)$ $\phi(n) = size \text{ of } Z_n^*$ p prime $\Rightarrow \phi(p) = p-1$ p, q distinct primes \Rightarrow $\phi(p q) = (p-1)(q-1)$

Fundamental lemma of powers. If $a \in Z_n^*$ then $a^x \equiv_n a^{x \mod \phi(n)}$ $5^{121242653} \pmod{11} = 5^{121242653 \pmod{10}} \pmod{11}$ $= 5^3 \pmod{11} = 4$ Note, $a^{\phi(n)-1} \equiv_n a^{-1}$ This can be used to compute a^{-1} .

for $a \in Z_n^*$, $a^x \equiv_n a^{x \mod \phi(n)}$

Hence, we can compute a^m (mod n) while performing at most 2 [log₂ φ(n)] multiplies

where each time we multiply together numbers with log₂ n + 1 bits

Euler'sTheorem

For $a \in Z_n^*$, $a^{\phi(n)} \equiv_n 1$

Note, $a^{\phi(n)-1} \equiv_n a^{-1}$ This can be used to compute a^{-1} .

Cryptography

Cryptography is the mathematics of devising secure communication systems

Cryptanalysis is the mathematics of breaking such systems.

One Time Pads

Gives perfect security! For random shared key, leaks no information about message

To be able to read a message encrypted like this, the receiver has to know the details of the encryption process.

Agreeing on a secret

One time pads rely on having a shared secret!

Alice and Bob have never talked before but they want to agree on a secret...

How can they do this?

Diffie-Hellman Key Exchange (1976)

Suppose we have two people wishing to communicate: Alice and Bob.

They do not want Eve (eavesdropper) to know their message.

Alice and Bob agree upon and make public two numbers prime p, and a generator g in Z_p^*

p and g are public!

Diffie-Hellman Key Exchange (1976)

Alice chooses a random $a \in Z_p^*$ and computes $g^a \pmod{p}$ and sends it to Bob.

Bob chooses a random $b \in Z_p^*$ and computes g^b (mod p) and sends it to Alice.

<u>Punchline</u>: Now both Alice & Bob can compute the "shared secret" m=g^{ab} (mod p)

What about Eve?

If Eve wants to compute g^{ab} she needs either a or b

Otherwise, she needs to compute g^{ab} (mod p) directly. This is so-called a <u>discrete logarithm problem</u>: Solve for in x for y= q^x (mod p), given y, g and p,

There is no algorithm to accomplish this in a reasonable amount of time.

Diffie Hellman requires both parties to exchange information to share a secret, so Eve might intercept...

can we get rid of this assumption?

Public Key Cryptography

<u>Goal</u>: Enable Bob to send encrypted message to Alice without their sharing any secret

Anyone should be able to send Alice a message in encrypted form.

Only Alice should be able to decrypt.

Anyone can send Alice a message in encrypted form *Only* Alice should be able to decrypt. HOW 222

Alice holds a special "secret key" or "trapdoor info" that enables her to decrypt

<u>Physical analogy</u>: key to a locked box

Alice holds a "secret key" that enables her to decrypt - aka a key to a locked box

Encryption (Physical analogy): Place message in a locked box with a "lock" that Alice's key can open.

How to get hold of such lock?

Alice gives it to everyone!!

Alice has a "*public key*" known to everyone which can be used for encryption, and a "private key" for decryption.

Public Key Crypto

Alice generates public (P) and private (S) keys.

Encryption of message m: c = Enc(m, P)

Anyone can encrypt (as P is public)

Decryption of ciphertext c: Dec(c, S)

Alice knows a secret key S, so can decrypt.

Of course, must have Dec(Enc(m,P),S) = m

Cracking RSA (125-dec.digit)

Team from Bellcore and MIT solved (in 1993-1994) this by using 1600 computers (over the internet) within 8 months.

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

Cracking RSA

The current record:

RSA-768 (232 dec.digits): Dec., 2009

RSA example

1. p = 61, q = 53

2. n = 3233, φ(n) = 60*52 = 3120

- 3. e = 37 (there are many to choose from)
- 4. EEA: d = 253

since 1 = (-3)*3120+253*37

Public key (3233, 37) Private key 253 Send: c = m³⁷ mod 3233

Read: m = c²⁵³ mod 3233

Groups Generators Euler's theorem Fermat's little theorem Diffie-Hellman Key Exchange RSA algorithm

Here's What You Need to Know...