

Upcoming Interview?

- How the World's Smartest Company Selects the Most Creative Thinkers

Outline

Groups
Generators
Euler's theorem
Fermat's little theorem
Diffie-Hellman Key Exchange
RSA algorithm

$$
\begin{gathered}
Z_{n}=\{0,1,2, \ldots, n-1\} \\
\text { Define }+_{n}: \\
a+n b=a+b(\bmod n) \\
\text { Define }-n: \\
a-n b=a+n(-b)
\end{gathered}
$$

$(-b)$ is an additive inverse

$$
b+n(-b)=0
$$

Special element 0 is called an identity element

Group (1854, Cayley)

A group G is a pair (S, \bullet), where S is a set and - is a binary operation $S \times S \rightarrow S$ such that:

1. (Closure) For all a and $b \in S, a \diamond b \in S$
2. is associative, $(a \diamond b) \bullet c=a \diamond(b \diamond c)$
3. (Identity) There exists an element $e \in S$ s.t.

$$
e \bullet a=a \bullet e=a, \quad \text { for all } a \in S
$$

4. (Inverses) For every $a \in S$ there is $b \in S$ s.t.
$a \bullet b=b * a=e$

Commutative or "Abelian" Groups

If $G=(S, \bullet)$ and \bullet is commutative, then
G is called a commutative group
remember, "commutative" means
$a \bullet b=b * a \quad$ for $a l l a, b$ in S

Some examples...

$\left(Z_{n},+_{n}\right)$ is a group
$(Z,+)$ is a group
$(N,+)$ is not a group
$\left(Z_{n},{ }_{n}\right)$ is not a group

Identity Is Unique

Theorem: A group has exactly one identity element

Proof:
Suppose e $\neq f$ are both identities of $G=(S, \bullet)$

Then $f=e \bullet f=e$. Contradiction!

We will always denote an identity by e.
Inverses Are Unique
Theorem: Every element in a group has a unique
inverse
Proof:
Suppose $b \neq c$ are both inverses of a.
Then $b=b \bullet e=b \bullet(a \bullet c)=(b \bullet a) \bullet c=c$
Contradiction!

Order of a group

A group $G=(S, \diamond)$ is finite if S is a finite set

Define $|G|=|S|$ to be the order of the group (i.e. the number of elements in the group)

What is the group with the least number of elements?

$$
\begin{aligned}
& \qquad G=(\{e\},) \text { where } e \bullet e=e \\
& Z_{n}=\left(\{1\},+_{n}\right) \\
& Z_{n} \text { can be generated by a single element } \\
& \hline
\end{aligned}
$$

Generators

An element $g \in S$ is called a generator of $G=(S, \diamond)$ if the set $\{g\}$ generates G
A set $T \subseteq S$ is said to generate the group $G=$ $(S, *)$ if every element of S can be expressed as a finite combination of elements in T under $*$.

A group G is cyclic if it is generated by a single element. A cyclic group can have more than one generator.
$\left(Z_{n},+_{n}\right)$ is cyclic
$\left(Z_{1}+\right)$ is cyclic

$$
Z^{*}{ }_{n}=\left\{x \in Z_{n} \mid G C D(x, n)=1\right\}
$$

$g \in\left(Z^{*}{ }_{n},{ }_{n}\right)$ is a generator if the powers of g hit every element of Z_{n}

This will mean that $Z_{p}{ }^{*}$ has an alternative representation as the powers of g :
$\left\{g, g^{2}, g^{3}, \ldots, g^{p-1}\right\}$.
$Z^{*}{ }_{n}=\left\{x \in Z_{n} \mid G C D(x, n)=1\right\}$

$g \in\left(Z^{\star}{ }_{n}{ }^{*}{ }_{n}\right)$ is a generator if the powers of g
hit every element of Z_{n}

This will mean that $Z_{p}{ }^{*}$ has an alternative
representation as the powers of g :
$\left\{g, g^{2}, g^{3}, \ldots, g^{p-1}\right\}$.

More generators for $\left(Z_{n},{ }_{n}\right)$
Consider $\left(\mathrm{Z}_{4},{ }^{+}{ }_{4}\right)$
$2+0=2 ; 2+2=0 ; 2+2+2=2 ; 2+2+2+2=0$
$3+0=3 ; 3+3=2 ; 3+3+3=1 ; 3+3+3+3=0$
3 is a generator, but 2 is not.
Claim: Any $a \in Z_{n}$ s.t. $G C D(a, n)=1$ generates $\left(Z_{n},+\right)$
Def: The order of an element g is
the least k s.t. $g^{k}=e$

Open Problem (Gauss)

Is there an efficient algorithm, given a prime p, to find a single generator in Z_{p}^{*} ?

That is, for every integer $a \in \mathbf{Z}_{p}{ }^{*}$, find an integer k such that $g^{k} \equiv a(\bmod p)$.

Such k is called the discrete logarithm of a to the base g modulo p .

Euler Phi Function $\phi(n)$

$$
\phi(n)=\text { size of } Z_{n}^{*}
$$

$$
p \text { prime } \Rightarrow \phi(p)=p-1
$$

p, q distinct primes \Rightarrow $\phi(p q)=(p-1)(q-1)$

Fundamental lemma of powers.

$$
\text { If } a \in Z_{n}^{*} \text { then } a^{x} \equiv_{n} a^{\times \bmod \phi(n)}
$$

$5^{121242653}(\bmod 11)=5^{121242653}(\bmod 10)(\bmod 11)$

$$
=5^{3}(\bmod 11)=4
$$

Note, $a^{\phi(n)-1} \equiv_{n} a^{-1}$
This can be used to compute a^{-1}.

Euler'sTheorem

For $a \in Z_{n}{ }^{*}, a^{\phi(n)} \equiv_{n} 1$

Note, $a^{\phi(n)-1} \equiv_{n} a^{-1}$
This can be used to compute a^{-1}.

Proof of Euler's Theorem

Define $a Z_{n}{ }^{*}=\left\{a *_{n} x \mid x \in Z_{n}{ }^{*}\right\}$ for $a \in Z_{n}{ }^{*}$
By the permutation property, $Z_{n}{ }^{*}=a Z_{n}{ }^{*}$
$\Pi x \equiv_{n} \Pi a x$ [as \times ranges over $Z_{n}{ }^{*}$]
$\Pi x \equiv_{n} \Pi \times\left(a^{\text {size of } Z n^{\star}}\right) \quad$ [Commutativity]
$1=_{n} a^{\text {size of } Z n^{*}} \quad$ [Cancellation]

$$
a^{\phi(n)}={ }_{n} 1
$$

Fermat's Little Theorem

If n is prime, $a \in Z_{n}{ }^{*} \Rightarrow a^{n-1} \equiv_{n} 1$

Note, $a^{n-2} \equiv_{n} a^{-1}$
This can be used to compute a^{-1}.

Cryptography

Cryptography is the mathematics of devising secure communication systems

Cryptanalysis is the mathematics of breaking such systems.

Agreeing on a secre \dagger

One time pads rely on having a shared secret!

Alice and Bob have never talked before but they want to agree on a secret...

How can they do this?

Diffie-Hellman Key Exchange (1976)
Suppose we have two people wishing to communicate: Alice and Bob.

They do not want Eve (eavesdropper) to know their message.

Alice and Bob agree upon and make public two numbers prime p, and a generator g in $Z_{p}{ }^{*}$
p and g are public!

Diffie-Hellman Key Exchange (1976)

Alice chooses a random $a \in Z_{p}{ }^{*}$ and computes $g^{a}(\bmod p)$ and sends it to Bob.

Bob chooses a random $b \in Z_{p}{ }^{*}$ and computes $g^{b}(\bmod p)$ and sends it to Alice.

Punchline: Now both Alice \& Bob can compute the "shared secret" $m=g^{a b}(\bmod p)$

What about Eve?

If Eve wants to compute $g^{a b}$ she needs either a or b

Otherwise, she needs to compute $g^{a b}(\bmod p)$ directly.
This is so-called a discrete logarithm problem: Solve for in x for $y=g^{x}(\bmod p)$, given y, g and p,

There is no algorithm to accomplish this in a reasonable amount of time.

Public Key Cryptography
Goal: Enable Bob to send encrypted message to Alice without their sharing any secret

Anyone should be able to send Alice a message in encrypted form.

Only Alice should be able to decrypt.

Anyone can send Alice a message in encrypted form Only Alice should be able to decrypt.

HOW ???

Alice holds a special "secret key" or "trapdoor info" that enables her to decrypt

Physical analogy: key to a locked box

Alice holds a "secret key" that enables her to decrypt - aka a key to a locked box

Encryption (Physical analogy):
Place message in a locked box with a "lock" that Alice's key can open.

How to get hold of such lock?
Alice gives it to everyone!!
Alice has a "public key" known to everyone which can be used for encryption, and a "private key" for decryption.

The RSA Cryptosystem (1977)

Cracking RSA (125-dec.digit)

Team from Bellcore and MIT solved (in 1993-1994) this by using 1600
computers (over the internet) within 8 months.

THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

RSA Example

$$
\begin{aligned}
& n=187=11^{\star} 17 \\
& e=7 \in Z^{\star} 160 \\
& \text { S }
\end{aligned} \text { M }
$$

Compute message $m^{e}(\bmod n)$
197=145 mod 187
137=106 mod 187

How hard is cracking RSA?

If we can factor products of two large primes, can we crack RSA?
p, q random primes
e random $\in Z^{*}{ }_{\phi(n)}$ $n=p^{\star} q$
$e^{\star} d=1[\bmod \phi(n)]$

If we know n and $\phi(n)$, can
$\left(m^{e}\right)^{d} \equiv_{n} m$ we crack RSA?

Cracking RSA

The current record:

RSA-768
(232 dec.digits):
Dec., 2009

RSA example
1. $p=61, q=53$
2. $n=3233, \phi(n)=60^{\star} 52=3120$
3. $e=37(t h e r e$ are many to choose from $)$
4. EEA: $d=253$
since $1=(-3) \star 3120+253^{\star} 37$
Public key $(3233,37)$
Private key 253
Send: $\quad c=m^{37} \bmod 3233$
Read: $m=c^{253} \bmod 3233$

Groups
Generators
Euler's theorem
Hermat's little theorem What You
Niffie-Hellman Key Exchange
RSA algorithm

