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Modular Arithmetic
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Working modulo integer n
Definitions of Z,, Z,”
Fundamental lemmas of +,-,*,/
Extended Euclid Algorithm
Euler phi function ¢(n) = |Z,"]
Fundamental lemma of powers
Euler Theorem

(a mod n) means the remainder
when a is divided by n.

amodn=r
=
a=dn+r for some integer d
or

a=n+rk for some integer k

=, induces a natural partition of the
infegers info n "residue” classes.

("residue” = what left over = "remainder")

Define residue class

[k] = the set of all integers that are
congruent to k modulo n.

Definition: Modular equivalence
a=b [mod n]
< (a mod n) = (b mod n)

=n | (a-b)

o

Written as a =, b, and
spoken
"aand b are
equivalent or
congruent modulo n"

31-81[mod 2]
31-,81

31-80 [mod 7]
31-, 80

Residue Classes Mod 3:

[0] ={...-6,-3,0,3,6,.}
] ={..-5,-2,1,4,7,.)
2] ={...-4.-1,2,5,8, .}
[-6]={..-6,-3,0,3,6,.} -]
71 ={..-5,-2,1,4,7,.y =Ml
[-11={.., -4,-1,2,5,8, .} =[2]




=, iS an equivalence relation

In other words, it is
Reflexive: a =, a
Symmetric: (a=, b) = (b=, a)

Transitive: (a=,band b=, ¢c) = (a=,¢)

Why do we care about these
residue classes?

Because we can replace any member
of a residue class with another member
when doing addition or multiplication mod n

and the answer will not change

To calculate: 249 * 504 mod 251
justdo -2*2 =-4=247

Fundamental lemma of
plus and times mod n:

If (x=,y)and (a =, b). Then

)x+a=,y+b
2)x*a=,y*b

Proof of 2):
xa=yb (mod n)

(x;ny):>x:y+kn

(a=,b)=> a=b+mn

xa=yb+n(ym+bk+km)

Another Simple Fact:
if (x=,y)and (k|n), then: x =,y

Example: 10 =, 16 = 10 =5 16
Proof:

X=y+mn
n=ak
x=y+amk

X=Y

A Unique Representation System
Modulo n:

We pick one representative from
each residue class and do all our calculations
using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1




Unique representation system mod 2

Finite set Z, = {0, 1}

Unique representation system mod 4

Finite set Z, = {0, 1, 2, 3}

WIN | = 0O
WIN | = O |O
N|l= O lWw| w

OC|lW | IN|=|=
= 1O | W IN|N

WIN | = |O

o|lo|o|o |©o
WIN | = |O =
N|JO|IN | O |N
= 1IN | W | o w

+2 0 1 *2 0 1

0 0 1 0 0 0

1 1 0 1 0 1
Notation

z,={0,1,2, .., n-1)

Define operations +, and *:

a+,b=(a+bmodn)
a*,b=(a*bmodn)

Some properties of the operation

["Closed"]

X,yelZ, >x+,yelZ,

["Associative"]
X, ¥.2e€Z,= (X+,Y)+n 2= X+, (Y +, 2)

["Commutative”]
X, YEZ,= X+ Y Ty+ X

Similar properties also hold for

For addition tables, rows and columns
always are a permutation of Z,,

plw[nv|a|o|+

plw|nv|ajo|o
o|ld|lw (N[~
alo|dw (NN
N =|o|d|w|w
w| N[ o|d|»

For multiplication, some rows and columns
are permutation of Z,, while others aren't...

(b (N|=2 o]+

“1ol1]l2]3]a * 0 1 2 3 4 5
ololololo]o o 0o 0o 0O o0 o0 O
1101l 2]3]a 1 0 1 2 3 4 5
210l 21]al1 3 2 0 2 4 0 2 4
3|01/ 3|1 4 | 2 3 0 3 0 3 0 3
4|04 |3 ]|2]1 4 0 4 2 0 4 2

5 0 5 4 3 2 1

what's happening here?




For addition, the permutation property
means you can solve, say,

4+x =1(mod 6)

Subtraction mod n is

well-defined +Jofl1]2]3]a]s

0 0 1 2 3 4 5

Each row has a O, 1012|3450
hence -a is that element [2 |2 |3 |4 |5 |0 |1
such that a+(-a)= 0 G L I O R B

4 4 5 0 1 2 3

=a-b=a+(-b) 5[50 |1|2|3]|4

3*

3*

For multiplication, if a row has a permutation
you can solve, say,

5*x =4 (mod 6)

X =4 (mod 6) x 0 1 2 3 4 5
o 0 0 0 0 0 o

1 0 1 2 3 4 5

2 0 2 4 0 2 4

x =3 (mod 6) |3 o 3 0o 3 o 3
4 0 4 2 0 4 2

[multiple solutions!] [5 o 5 4 3 2 1

Multiplicative Inverse

Definition. Let a in Z, An element b in Z, is called
a multiplicative inverse of a, if a* b =1 (mod n)

A visual way to understand
multiplication
and the
“permutation property”.

Consider *5 on Zg

*

Njola|s|lw|N|=|o|a

olojlojlojlo|lo|lo|O |©

N~Njojlao|ldlw (N

]

There are exactly 8 distinct
multiples of 3 modulo 8.

3k mod 8

hit all numbers < row 3 has the
“permutation property”




There are exactly 2 distinct
multiples of 4 modulo 8.

i 4k mod 8

row 4 does not have "permutation property” for *5 on Zg

]

There are exactly 1 distinct
multiples of 8 modulo 8.

8k mod 8

There are exactly 4 distinct
multiples of 6 modulo 8.

i 6k mod 8

What's the pattern?

+ exactly 8 distinct multiples of 3 modulo 8
+ exactly 2 distinct multiples of 4 modulo 8
+ exactly 1 distinct multiple of 8 modulo 8

+ exactly 4 distinct multiples of 6 modulo 8

+ exactly

/GCD(X,
Y (x¥) distinct

multiples of x moduloy

Theorem:

There are exactly
y/GCD(xy)
distinct multiples of x modulo y
Hence,

only those values of x with GCD(xy) = 1
have n distinct multiples

(i.e., the permutation property for *, on Z,)

Fundamental lemma of division (or
cancelation) modulo n:
if 6€D(c,n)=1, thenca=,cb =a=,b

Proof:

ca=,¢cb =>n|(ca-cb) =>n|c(a-b)

But 6CD(n, c)=1, thus

nl(a-b)=>a=,b




If you want to extend to
general c and n

cas,cb=a =n/ged(cn) b

Fundamental lemmas mod n:

If (x=,y)and (a =, b). Then

New definition:

Z ={xeZ,| 6CD(x, n) =1}

Multiplication over this set Z,*
has the cancellation property.

)x+a=,y+b
2)x*a=,y*b
3)x-a=,y-b
4)cx=,cy =>a=,b
if gcd(c,n)=1
Z,={012345}
Z, = {15}
+ 0 1 2 3 4 5
[ [ 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 [ 1 0 1 2 3 4 5
3 3 4 5 0 1 2 0 0 0 o 0 0 []
4 4 5 0 1 2 3 1 0 1 2 3 4 5
5 5 [ 1 2 3 4 2 o 2 4 o 2 4
3 o 3 0 3 0 3
4 o 4 2 o 4 2
5 o 5 4 3 2 1

We've got closure

Recall we proved that Z, was “closed”
under addition and multiplication?

What about Z," under multiplication?
Fact:if abin Z,” thena*b in Z,
Proof: if gcd(a,n) = ged(b,n) = 1,

thengcd(ab,n)=1
thengcd(abmodn,n)=1

Z,"={0¢x<12 | gcd(x,12) = 1}

={15,7,11}




Z5"={123,4}

* 1| 2] 3] 4
11| 2|38/ a4
2 | 24|13
3|3 1] 4] 2
4| 4|3 |21

For prime p, the set Z,” = Z, \ {0}

Proof:

It just follows from the definition!

For prime p, all 0 <
gcd( p)=1

< p satisfy

Euler Phi Function ¢(n)
&(n) = size of Z,"

= number of 1<k <n that
are relatively prime fo n.

p prime
=Z,;={123,..p-1}

= o(p) = p-1

Z,"={0¢<x<12 | ged(x,12) = 1}

= {15.7.11)

w1 |5 7| 1
1115 | 7|1
5 |51 11| 7
771115
11|11 7|5 1

Theorem: if p,q distinct primes then
¢o(p 9) = (p-1(q-1)

pq = # of numbers from 1 to pq

p = # of multiples of q up to pq

q = # of multiples of p up to pq

1 =# of multiple of both p and q up to pq

o(pq) = pq-p-q+1=(p-1)(q-1)
®(15) = §(3*5) =(3-1)(5-1)=8

Multiplicative inverse of a mod n
= number b such that a*b=1 (mod n)

Remember,

only defined for numbers a in Z,*

What is the multiplicative inverse

of a= 342952340 in
Z 4230493243 = Zn?

Answer: a'! = 583739113




How do you find
multiplicative inverses
fast ?

Theorem: given positive integers X, Y, there
exist integers r, s such that

rX+sY=gcd(X,Y)

and we can find these integers fast!
Extended Euclid Algorithm

Now take n,and a in Z,*
gcd(a, n) ? ainZ*=gcd(a,n)=1

Thus, we can find rand s s.t. r*a + s*n=1
thenr*a=,1
so,r=almodn

Euclid's Algorithm for GCD

Euclid(A,B)
If B=0 then return A
else return Euclid(B, A mod B)

Euclid(67,29) 67 -2*29=67mod29=9
Euclid(29,9) 29-3*9=29mod9 =2
Euclid(9,2) 9-4*2=9mod2 =1
Euclid(2,1) 2-2*1=2mod1 =0

Euclid(1,0) outputs 1

Extended Euclid Algorithm

Let <r,s> denote the number r*67 + s*29 = 1.
Calculate all intermediate values in this
representation.

67=<1,0> 29=<0,1>

Euclid(67,29) 9=<1,0> - 2*<0,1> 9 =<1-2*0, 0-2*1>
Euclid(29,9) 2=<0,1> — 3*<1,-2> 2=<0-3,1+6>
Euclid(9,2) 1=<1,-2> — 4*<-3,7> 1=<13,-30>
Euclid(2,1) 0=<-3,7> - 2*<13,-30> 0=<-29,67>

Euclid(1,0) outputs 1=13*67 - 30*29

Finally, a puzzle.;}fw

You have a 5 gallon bottle, ~\(§
a 3 gallon bottle,
and lots of water.

Can you measure out
exactly 4 gallons?

Diophantine equation

Does the equality
3x+5y=4
have a solution where x,y are integers?




New bottles of water puzzle

You have a 6 gallon bottle,
a 3 gallon bottle,
and lots of water.

How can you measure out
exactly 4 gallons?

Theorem

The linear equation
ax+by=c

has an integer solution in x and y iff gcd(a,b)|c

The linear equation
ax+by=c
has an integer solution in x and y iff gcd(a,b)|c

=>) gcd(a,b)|a and ged(a,b)|b => gcd(a,b)l(a x + b y)

<z) gcd(a,b)lc =>c=z* gcd(a,b)
On the other hand, gcd(a,b) = x;a+y; b

zgcd(ab)=zx;a+zy; b

c=zx;a+zy; b

Hilbert's 10™ problem

Hilbert asked for a universal method of solving all
Diophantine equations

P(x1,X2,...,X,)=0
with any number of unknowns and integer
coefficients.

In 1970 Y. Matiyasevich proved that the
Diophantine problem is unsolvable.

Exponentiation

]

How do you compute...

58 using few multiplications?
First idea:

5 52 53 54 55 56 57 5°
= 5*5
= 52*5




How do you compufte...

Repeated squarking calculates
a2
in k multiply operations

compare with
(2k - 1) multiply
operations
used by the ndive method

58
Better idea:
Used only 3 mults
4 B8
55 55 instead of 7 Il
=5*5
= B2*52
= 5454
How do you compufte...
513

Use repeated squaring again?

5 52 5% b8

Note that 13 = 8+4+1« 13,5 = (1101)

Soal¥=ad*a**dl

Two more multiplies!

Hence, we can compute
am
while performing at most

2 [log, m] multiplies

To compute a™
Suppose 2k <m < 2k
a a a* a8 . o
This takes k multiplies

Now write m as a sum of distinct powers of 2
p
say, m = 2K+ 211+ 202+ 2ir
am = g2 * g2 x _ x gt

at most k more multiplies

How do you compute...

513 (mod 11)

First idea: Compute 53 using 5 multiplies

5 52 5% 55 51 58 =1220703125
= 5854 = 512*5

then take the answer mod 11

1220703125 (mod 11) = 4

10



How do you compufte...
513 (mod 11)
Better idea: keep reducing the answer mod 11
5 K B4 B8 B2 B3

25 =, 81 =,36 =15
=3 =49 =4 =3 =44

Hence, we can compute
a™ (mod n)
while performing at most
2 Llog, m] multiplies

where each time we multiply

together numbers
with [log, n] + 1 bits

How do you compute...

H121242653 (mod 11)

The current best idea would still
need about 54 calculations

answer = 4

Can we exponentiate any faster?

OK, need a little more number
theory for this one...

Fundamental lemma of powers?

If (x=,y)
Then ax =, a ?

NO!

(2=35), but it is not
the case that: 22 =5 2°

(Correct) Fundamental lemma of
powers.

Ifae Z, and x =,y thena*= a
Equivalently,

forae Z,", ax=, axmed i

11



How do you compute...

5121242653 (mod 11)

121242653 (mod 10) = 3

53 (mod 11) =125 mod 11 =4

Why did we

forae Z,”, ax=,axmd M  tqke mod 107

forae Z,”, ax=, axmodén)

Hence, we can compute
a™ (mod n)
while performing at most
2 Llog, o(n)) multiplies

where each time we multiply

together numbers
with Llog, nl+ 1 bits

343280327847324 mod 39

Step 1. reduce the base mod 39

Step 2: reduce the exponent mod ¢(39) = 24

you should check that gcd(343280,39)=1 to use lemma
of powers

Step 3: use repeated squaring to compute 24,
taking mods at each step

How do you prove the lemma for powers?
forae Z,, ax=, axmoden

Use Euler's Theorem
Forae Z, , at™= 1
Corollary: Fermat's Little Theorem

For p prime,a e Z, = ar1=,1

Proof of Euler's Theorem: fora € Z,", a¥ =1

DefineaZ, ={a*,x | xe Z,} foraezZ,
By the permutation property, Z," = aZ,"
[1x=, [Tax [as x ranges over Z," ]

[Ix =TI x (asizeofz™)  [Commutativity]

1=, agsizeofzn [Cancellation]

a o(n =n 1

* Working modulo integer n

- Definitions of Z,, Z,"

+ Fundamental lemmas of +,-*,/
+ Extended Euclid Algorithm

- Euler phi function ¢(n) = |Z,”|
* Fundamental lemma of powers
+ Euler Theorem

Here's What
You Need to
Know...

12



