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Number Theory  
and  

Modular Arithmetic 

Great Theoretical Ideas In CS 
Victor Adamchik CS 15-251 

Lecture 23 Carnegie Mellon University 

1 p 

p-1 

Working modulo integer n 

Definitions of Zn, Zn
* 

Fundamental lemmas of +,-,*,/ 

Extended Euclid Algorithm 

Euler phi function (n) = |Zn
*| 

Fundamental lemma of powers 

Euler Theorem 
  
  
 

Outline 

(a mod n) means the remainder  
when  a is divided by n.  

 
 

a mod n = r 
 

a = d n + r for some integer d 
or 

a = n + r k for some integer k 

Definition: Modular equivalence 
a  b [mod n]  

 (a mod n) = (b mod n) 
 n | (a-b) 

Written as a n b, and 
spoken 

“a and b are 
equivalent or 

congruent modulo n” 

31  81 [mod 2] 
31 2 81 

 
31  80 [mod 7] 

31 7 80 

n induces a natural partition of the 
integers into n “residue” classes.  

(“residue” = what left over = “remainder”) 

Define residue class  
[k] = the set of all integers that are 

congruent to k modulo n. 

Residue Classes Mod 3: 
 

[0]  = { …, -6, -3, 0, 3, 6, ..} 
[1]  = { …, -5, -2, 1, 4, 7, ..} 
[2]  = { …, -4, -1, 2, 5, 8, ..} 

 
 [-6] = { …, -6, -3, 0, 3, 6, ..} 
[7]  = { …, -5, -2, 1, 4, 7, ..} 
[-1] = { …, -4, -1, 2, 5, 8, ..} 

= [0] 

= [1] 

= [2] 
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n is an equivalence relation 
 

In other words, it is 
 

Reflexive: a n a 
 
Symmetric: (a n b)  (b n a) 
 
Transitive: (a n b and b n c)  (a n c) 

Why do we care about these  
residue classes? 

Because we can replace any member  
of a residue class with another member 

when doing addition or multiplication mod n 
and the answer will not change 

To calculate: 249 *  504  mod 251 

just do      -2 * 2  = -4 = 247 

Fundamental lemma of  
plus and times mod n: 

 
If (x n y) and (a n b). Then 

 
1) x + a n y + b 
2) x * a n y * b 

Proof of 2):  
x a = y b (mod n) 

(x n y) => x = y + k n 
 

(a n b) =>  a = b + m n 

x a = y b + n (y m + b k + k m) 

Another Simple Fact:  
if (x n y) and (k|n), then: x k y 

 

Example: 10 6 16  10 3 16   

Proof: 

x = y + m n 
n = a k 

x = y + a m k 
x k y 

A Unique Representation System 
Modulo n: 

 
We pick one representative from  

each residue class and do all our calculations 
using these representatives. 

Unsurprisingly, we use 0, 1, 2, …, n-1 
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Unique representation system mod 2 
 

Finite set Z2 = {0, 1} 
 

+2 

 
0 1 

0 0 1 

1 1 0 

*2 

 
0 1 

0 0 0 

1 0 1 

XOR AND 

Unique representation system mod 4 
 

Finite set Z4 = {0, 1, 2, 3} 
 

+ 0 1 2 3 

0 0 1 2 3 

1 1 2 3 0 

2 2 3 0 1 

3 3 0 1 2 

* 0 1 2 3 

0 0 0 0 0 

1 0 1 2 3 

2 0 2 0 2 

3 0 3 2 1 

Notation 

Define operations +n and *n: 
 

a +n b = (a + b mod n) 
a *n b = (a * b mod n) 

Zn = {0, 1, 2, …, n-1} 
[“Closed”]  

x, y  Zn   x +n y  Zn 

 

[“Associative”]  
x, y, z  Zn  (x +n y) +n z = x +n (y +n z) 

 

[“Commutative”] 
x, y  Zn  x +n y  = y +n x  

Some properties of the operation +n 

Similar properties also hold for *n 

For addition tables, rows and columns 
always are a permutation of Zn 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

+ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 

For multiplication, some rows and columns 
are permutation of Zn, while others aren’t… 

* 0 1 2 3 4 

0 0 0 0 0 0 

1 0 1 2 3 4 

2 0 2 4 1 3 

3 0 3 1 4 2 

4 0 4 3 2 1 

* 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

what’s happening here? 
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For addition, the permutation property 
means you can solve, say, 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

4 + x  = 1 (mod 6) 

Subtraction mod n is  
well-defined 

Each row has a 0, 
hence –a is that element 

such that a + (-a) = 0 

 a – b = a + (-b) 

For multiplication, if a row has a permutation 
you can solve, say, 

5 * x  = 4 (mod 6) 

* 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

3 * x  = 3 (mod 6) 

multiple solutions! 

3 * x  = 4 (mod 6) 
no solutions! 

Multiplicative Inverse 

Definition. Let a in Zn An element b in Zn is called 
a multiplicative inverse of a, if a * b = 1 (mod n) 

A visual way to understand  
multiplication  

and the  
“permutation property”. 

* 0 1 2 3 4 5 6 7 

0 

1 

2 

3 6 1 4 7 2 5 

4 

5 

6 

7 

Consider *8 on Z8 

0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 0 

0 

0 

0 

0 

0 

0 

2 

3 

4 

5 

6 

7 

hit all numbers  row 3 has the  
“permutation property” 

There are exactly 8 distinct  
multiples of 3 modulo 8. 

0 

1 

2 

3 

4 

5 

6 

7 3k mod 8 
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There are exactly 2 distinct  
multiples of 4 modulo 8. 

row 4 does not have “permutation property” for *8 on Z8 

0 

1 

2 

3 

4 

5 

6 

7 4k mod 8 

There are exactly 1 distinct  
multiples of 8 modulo 8. 

0 

1 

2 

3 

4 

5 

6 

7 8k mod 8 

There are exactly 4 distinct  
multiples of 6 modulo 8. 

0 

1 

2 

3 

4 

5 

6 

7 6k mod 8 

What’s the pattern? 

• exactly 8 distinct multiples of 3 modulo 8 

• exactly 2 distinct multiples of 4 modulo 8 

• exactly 1 distinct multiple of 8 modulo 8 

• exactly 4 distinct multiples of 6 modulo 8 

 

 

• exactly __________________ distinct 
  

multiples  of x modulo y 

y/GCD(x,y) 

Theorem:  
 

There are exactly  
 

y/GCD(x,y) 
 

distinct multiples of x modulo y 

Hence, 
only those values of x with GCD(x,y) = 1 

have n distinct multiples 

(i.e., the permutation property for *n on Zn) 
 

Fundamental lemma of division (or 
cancelation) modulo n: 

if GCD(c,n)=1, then ca n cb  a n b  

Proof: 

c a =n c b  => n |(ca – cb)  => n |c(a-b) 

But GCD(n, c)=1, thus  
 

n|(a-b) => a =n b 
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If you want to extend to  
general c and n 

 
ca n cb  a n/gcd(c,n) b  

Fundamental lemmas mod n: 
 

If (x n y) and (a n b). Then 
 

1) x + a n y + b 
2) x * a n y * b 
3) x - a n y – b 

4) cx n cy  a n b 
if gcd(c,n)=1 

New definition: 
 

Zn
* = {x  Zn | GCD(x, n) =1} 

Multiplication over this set Zn
*  

has the cancellation property. 

+ 0 1 2 3 4 5 

0 0 1 2 3 4 5 

1 1 2 3 4 5 0 

2 2 3 4 5 0 1 

3 3 4 5 0 1 2 

4 4 5 0 1 2 3 

5 5 0 1 2 3 4 

* 0 1 2 3 4 5 

0 0 0 0 0 0 0 

1 0 1 2 3 4 5 

2 0 2 4 0 2 4 

3 0 3 0 3 0 3 

4 0 4 2 0 4 2 

5 0 5 4 3 2 1 

Z6 = {0,1,2,3,4,5} 
 

Z6
* = {1,5} 

Recall we proved that Zn was “closed” 
under addition and multiplication? 

What about Zn
* under multiplication? 

Fact: if a,b in Zn
* ,then a*b in Zn

*     

Proof: if gcd(a,n) = gcd(b,n) = 1, 
then gcd(a b, n) = 1 
then gcd(a b mod n, n) = 1 

We’ve got closure Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1} 

  
= {1,5,7,11} 

*12 1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 



7 

*5 1 2 3 4 

1 1 2 3 4 

2 2 4 1 3 

3 3 1 4 2 

4 4 3 2 1 

= Z5 \ {0} Z5
* = {1,2,3,4} For prime p, the set Zp

* = Zp \ {0} 

Proof: 
It just follows from the definition! 

 
For prime p, all 0 < x < p satisfy  

gcd(x,p) = 1 

Euler Phi Function (n)  
 

(n) = size of Zn
*  

=  number of 1 ≤ k < n that  
are relatively prime to n. 

p prime  
 

 Zp
*= {1,2,3,…,p-1} 

 
 (p) = p-1 

Z12
* = {0 ≤ x < 12 | gcd(x,12) = 1} 

  
= {1,5,7,11} 

*12 1 5 7 11 

1 1 5 7 11 

5 5 1 11 7 

7 7 11 1 5 

11 11 7 5 1 

(12) = 4 

Theorem: if p,q distinct primes then  
(p q) = (p-1)(q-1)  

pq = # of numbers from 1 to pq 
p   = # of multiples of q up to pq 
q   = # of multiples of p up to pq 
1   = # of multiple of both p and q up to pq 
 

(pq) = pq – p – q + 1 = (p-1)(q-1) 

(15) = (3*5) =(3-1)(5-1)=8 

Multiplicative inverse of a mod n 
= number b such that a*b=1 (mod n) 

Remember, 
only defined for numbers a in Zn

* 

What is the multiplicative inverse 
  

of a = 342952340 in 
Z4230493243 = Zn? 

Answer: a-1 = 583739113 
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How do you find  
multiplicative inverses  

fast ? 

Theorem: given positive integers X, Y, there 
exist integers r, s such that 

r X + s Y = gcd(X, Y) 

and we can find these integers fast! 

Now take n, and a in Zn
* 

gcd(a, n) ? a in Zn
*  gcd(a, n) = 1 

Thus, we can find r and s s.t. r*a + s*n = 1 

then r*a =n 1 

so, r = a-1 mod n 

Extended Euclid Algorithm 

Euclid(67,29)   67 – 2*29 = 67 mod 29 = 9 
Euclid(29,9)   29 – 3*9 = 29 mod 9   = 2 
Euclid(9,2)   9 – 4*2 = 9 mod 2     = 1 
Euclid(2,1)   2 – 2*1 = 2 mod 1      = 0 
Euclid(1,0) outputs 1 

Euclid(A,B) 
If B=0 then return A 
      else return Euclid(B, A mod B) 

Euclid’s Algorithm for GCD Extended Euclid Algorithm 

Let <r,s> denote the number r*67 + s*29 = 1.  
Calculate all intermediate values in this 

representation. 

67=<1,0>     29=<0,1>  
      

Euclid(67,29)    9=<1,0> – 2*<0,1> 9 =<1-2*0, 0-2*1> 

Euclid(29,9)    2=<0,1> – 3*<1,-2> 2=<0-3,1+6> 

Euclid(9,2)    1=<1,-2> – 4*<-3,7>  1=<13,-30> 

Euclid(2,1)    0=<-3,7> – 2*<13,-30> 0=<-29,67>  

 
Euclid(1,0) outputs   1 = 13*67 – 30*29 

Finally, a puzzle… 

You have a 5 gallon bottle,  
a 3 gallon bottle,  
and lots of water. 

Can you measure out 
exactly 4 gallons? 

Diophantine equation 

Does the equality  
3x + 5y = 4 

have a solution where x,y are integers? 
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New bottles of water puzzle 

You have a 6 gallon bottle,  
a 3 gallon bottle,  
and lots of water. 

How can you measure out 
exactly 4 gallons? 

Theorem 

The linear equation   
 

a x + b y = c 
 

has an integer solution in x and y iff gcd(a,b)|c 
 

The linear equation   
a x + b y = c 

has an integer solution in x and y iff gcd(a,b)|c 
 

=>) gcd(a,b)|a and gcd(a,b)|b => gcd(a,b)|(a x + b y) 
 

<=)   gcd(a,b)|c => c = z * gcd(a,b) 

On the other hand,  gcd(a,b) = x1 a + y1 b 

z gcd(a,b) = z x1 a + z y1 b 

c = z x1 a + z y1 b 

Hilbert’s 10th problem 

Hilbert asked for a universal method of solving all 
Diophantine equations  

P(x1,x2,…,xn)=0 
with any number of unknowns and integer 

coefficients. 

In 1970 Y. Matiyasevich proved that the 
Diophantine problem is unsolvable. 

Exponentiation 

How do you compute… 

58 

First idea: 

5 52 53 54 55 56 57 58 

= 5*5 

= 52*5 

using few multiplications? 
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How do you compute… 

58 

Better idea: 

5 52 54 58 

= 5*5 

= 52*52 

= 54*54 

Used only 3 mults 
instead of 7 !!! 

Repeated squaring calculates 
a2k 

in k multiply operations 

compare with 
(2k – 1) multiply 

operations 
used by the naïve method 

How do you compute… 

513 

Use repeated squaring again? 

5 52 54 58 

Note that 13 = 8+4+1 

So a13 = a8 * a4 * a1 

Two more multiplies! 

1310 = (1101)2 

To compute am 

Suppose 2k ≤ m < 2k+1 

a a2 a4 a8 

This takes k multiplies 

Now write m as a sum of distinct powers of 2 

am = a2k * a2i1 * … * a2it  

a2k 
. . . 

say, m = 2k + 2i1 + 2i2 … + 2it 

at most k more multiplies 

Hence, we can compute  
am  

while performing at most 
  

2 log2 m multiplies 

How do you compute… 

513 (mod 11) 

First idea: Compute 513 using 5 multiplies 

5 52 54 58 512 513 

= 58*54 = 512*5 

then take the answer mod 11 

= 1 220 703 125 

1220703125 (mod 11) = 4 



11 

How do you compute… 

513 (mod 11) 

Better idea: keep reducing the answer mod 11 

5 52 54 58 512 513 

=11 3 =11 9 
=11 81 =11 36 =11 15 

=11 4 =11 3 =11 4 

 25 

Hence, we can compute  
am (mod n) 

while performing  at most  
2 log2 m multiplies 

where each time we multiply 
together numbers  

with log2 n + 1 bits 

How do you compute… 

5121242653 (mod 11) 

The current best idea would still 
need about 54 calculations 

answer = 4 

Can we exponentiate any faster? 

OK, need a little more number  
theory for this one… 

Fundamental lemma of powers? 
 

If (x n y) 
Then ax n ay ? 

NO!  

(2 3 5) , but it is not 
the case that: 22 3 2

5 

(Correct) Fundamental lemma of 
powers. 

Equivalently, 
 

for a  Zn
*,  ax n ax mod (n) 

If a  Zn
*  and x (n) y  then ax n ay 
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How do you compute… 

5121242653 (mod 11) 

121242653 (mod 10) = 3 

53 (mod 11) = 125 mod 11 = 4 

Why did we 
take mod 10? for a  Zn

*,  ax n ax mod (n) 

Hence, we can compute  
am (mod n) 

while performing  at most  
2 log2 (n) multiplies 

where each time we multiply 
together numbers  

with log2 n + 1 bits 

for a  Zn
*,  ax n ax mod (n) 

343280327847324 mod 39 

Step 1: reduce the base mod 39 

Step 2: reduce the exponent mod (39) = 24 

Step 3: use repeated squaring to compute 24,  
  taking mods at each step 

you should check that gcd(343280,39)=1 to use lemma 
of powers 

Use Euler’s Theorem 

 
For a  Zn

*, a (n) n 1 

Corollary: Fermat’s Little Theorem 
 

For p prime, a  Zp
* ap-1 p 1 

How do you prove the lemma for powers? 

for a  Zn
*,  ax n ax mod (n) 

Proof of Euler’s Theorem: for a  Zn
*, a (n) n 1 

Define a Zn
* = {a *n x | x  Zn

*} for a  Zn
* 

By the permutation property, Zn
*  = aZn

* 

 x n   ax  [as x ranges over Zn
* ]    

 

x n  x  (a size of Zn*)    [Commutativity] 
 

1 =n  a
size of Zn*       [Cancellation] 

 
a (n) =n 1  

• Working modulo integer n 

• Definitions of Zn, Zn
* 

• Fundamental lemmas of +,-,*,/ 

• Extended Euclid Algorithm 

• Euler phi function (n) = |Zn
*| 

• Fundamental lemma of powers 

• Euler Theorem 
  
  
 

Here’s What 
You Need to 

Know… 


