

Outline

Working modulo integer n Definitions of Z_n , Z_n^* Fundamental lemmas of +,-,*,/ Extended Euclid Algorithm Euler phi function $\phi(n) = |Z_n^*|$ Fundamental lemma of powers Euler Theorem

(a mod n) means the remainder when a is divided by n. a mod n = r ⇔ a = d n + r for some integer d or a = n + r k for some integer k

≡_n induces a natural partition of the integers into n "residue" classes.

("residue" = what left over = "remainder")

Define residue class [k] = the set of all integers that are congruent to k modulo n.

Residue Classes Mod 3:	
[0] = {, -6, -3, 0, 3, 6,} [1] = {, -5, -2, 1, 4, 7,} [2] = {, -4, -1, 2, 5, 8,}	
[-6] = {, -6, -3, 0, 3, 6,} [7] = {, -5, -2, 1, 4, 7,} [-1] = {, -4, -1, 2, 5, 8,}	= [0] = [1] = [2]

Fundamental lemma of plus and times mod n: If $(x \equiv_n y)$ and $(a \equiv_n b)$. Then 1) $x + a \equiv_n y + b$ 2) $x * a \equiv_n y * b$ Proof of 2): $x a = y b \pmod{n}$ $(x \equiv_n y) \Rightarrow x = y + k n$ $(a \equiv_n b) \Rightarrow a = b + m n$ x a = y b + n (y m + b k + k m)

Another Simple Fact: if $(x =_n y)$ and (k|n), then: $x =_k y$ Example: $10 =_6 16 \Rightarrow 10 =_3 16$ Proof: x = y + m n n = a k x = y + a m k x = y + a m k $x =_k y$

A <u>Unique</u> Representation System Modulo n:

We pick one representative from each residue class and do all our calculations using these representatives.

Unsurprisingly, we use 0, 1, 2, ..., n-1

Unique representation system mod 4										
Finite set Z ₄ = {0, 1, 2, 3}										
+	0	1	2	3		*	0	1	2	3
0	0	1	2	3		0	0	0	0	0
1	1	2	3	0		1	0	1	2	3
2	2	3	0	1		2	0	2	0	2
3	3	0	1	2		3	0	3	2	1
					-					

For multiplication, if a you can s 5 * x = 4	i rov solve (mo	v ha e, so od 6	s a 1y,)	per	mut	atio	on
3 * × = 4 (mod 6)	*	0	1	2	3	4	5
no solutions!	0	0	0	0	0	0	0
	1	0	1	2	3	4	5
$2 \star 1 = 2 (mod 6)$	2	0	2	4	0	2	4
$3^{\circ} x = 3 (mod o)$	3	0	3	0	3	0	3
	4	0	4	2	0	4	2
multiple solutions!	5	0	5	4	3	2	1

A visual way to understand multiplication and the "permutation property".

Consider $*_8$ on Z_8									
*	0	1	2	3	4	5	6	7	
0	0	0	0	0	0	0	0	0	
1	0	1	2	3	4	5	6	7	
2	0	2							
3	0	3	6	1	4	7	2	5	
4	0	4							
5	0	5							
6	0	6							
7	0	7							

Theorem:

There are exactly

y/GCD(x,y)

distinct multiples of x modulo y

Hence, only those values of x with GCD(x,y) = 1 have n distinct multiples (i.e., the permutation property for *_n on Z_n) Fundamental lemma of division (or cancelation) modulo n: if GCD(c,n)=1, then ca ≡_n cb ⇒ a ≡_n b Proof: c a =_n c b => n |(ca - cb) => n |c(a-b) But GCD(n, c)=1, thus n|(a-b) => a =_n b If you want to extend to general c and n ca ≡_n cb ⇒ a ≡_{n/gcd(c,n)} b

Fundamental lemmas mod n: If $(x \equiv_n y)$ and $(a \equiv_n b)$. Then 1) $x + a \equiv_n y + b$ 2) $x * a \equiv_n y * b$ 3) $x - a \equiv_n y - b$ 4) $cx \equiv_n cy \Longrightarrow a \equiv_n b$ if gcd(c,n)=1

Z ₁₂	* = {0	≤ × < 1	12 go	cd(x,1	2) = 1}	
		= {1	,5,7,1	1}		
	* 12	1	5	7	11	
	1	1	5	7	11	
	5	5	1	11	7	
	7	7	11	1	5	
	11	11	7	5	1	

For prime p, the set $Z_p^* = Z_p \setminus \{0\}$

Proof: It just follows from the definition!

For prime p, all 0 < × < p satisfy gcd(×,p) = 1

$Z_{12}^{*} = \{0 \le x \le 12 \mid gcd(x, 12) = 1\}$										
= {1,5,7,11} ((12) = 4										
	* 12	1	5	7	11					
	1	1	5	7	11					
	5	5	1	11	7					
	7	7	11	1	5					
	11	11	7	5	1					

Theorem: if p,q distinct primes then $\phi(p q) = (p-1)(q-1)$ pq = # of numbers from 1 to pq p = # of multiples of q up to pq q = # of multiples of p up to pq 1 = # of multiple of <u>both</u> p and q up to pq $\phi(pq) = pq - p - q + 1 = (p-1)(q-1)$ $\phi(15) = \phi(3*5) = (3-1)(5-1)=8$

Multiplicative inverse of a mod n = number b such that a*b=1 (mod n)

Remember, only defined for numbers a in $Z_n^{\,\star}$

What is the multiplicative inverse

of a = 342952340 in Z₄₂₃₀₄₉₃₂₄₃ = Z_n?

Answer: a⁻¹ = 583739113

How do you find multiplicative inverses <u>fast</u>?

Euclid's Algorithm for GCD

Euclid(A,B) If B=0 then return A else return Euclid(B, A mod B)

Euclid(67,29) Euclid(29,9) Euclid(9,2) Euclid(2,1) Euclid(1,0) outputs 1 67 - 2*29 = 67 mod 29 = 9 29 - 3*9 = 29 mod 9 = 2 9 - 4*2 = 9 mod 2 = 1 2 - 2*1 = 2 mod 1 = 0

Extended Euclid Algorithm Let <r,s> denote the number r*67 + s*29 = 1. Calculate all intermediate values in this representation.</r,s>										
67=<1,0>	29=<0,1>									
Euclid(67,29) Euclid(29,9) Euclid(9,2) Euclid(2,1)	9=<1,0> - 2*<0,1> 2=<0,1> - 3*<1,-2> 1=<1,-2> - 4*<-3,7> 0=<-3,7> - 2*<13,-30>	9 =<1-2*0, 0-2*1> 2=<0-3,1+6> 1=<13,-30> 0=<-29,67>								
Euclid(1,0) outputs 1 = 13*67 - 30*29										

Diophantine equation

Does the equality 3x + 5y = 4 have a solution where x,y are integers?

New bottles of water puzzle

You have a 6 gallon bottle, a 3 gallon bottle, and lots of water.

How can you measure out exactly 4 gallons?

Theorem

The linear equation

a x + b y = c

has an integer solution in x and y iff gcd(a,b)|c

The linear equation a x + b y = c has an integer solution in x and y iff gcd(a,b)|c =>) gcd(a,b)|a and gcd(a,b)|b => gcd(a,b)|(a x + b y) <=) gcd(a,b)|c => c = z * gcd(a,b) On the other hand, gcd(a,b) = x₁ a + y₁ b z gcd(a,b) = z x₁ a + z y₁ b c = z x₁ a + z y₁ b

Hilbert's 10th problem

Hilbert asked for a universal method of solving all Diophantine equations $P(x_1, x_2, ..., x_n)=0$ with any number of unknowns and integer coefficients.

In 1970 Y. Matiyasevich proved that the Diophantine problem is unsolvable.

Hence, we can compute a^m while performing at most 2 [log₂ m] multiplies

How do you compute ...

5¹³ (mod 11)

Better idea: keep reducing the answer mod 11

5	5 ²	5 ⁴	5 ⁸	5 ¹²	5 ¹³
	25		= ₁₁ 81	= ₁₁ 36	= ₁₁ 15
	= ₁₁ 3	= ₁₁ 9	= ₁₁ 4	$=_{11}^{11}$ 3	=11 4

Hence, we can compute a^m (mod n) while performing at most 2 Llog₂ mJ multiplies

where each time we multiply together numbers with log2 n] + 1 bits

How do you compute ...

5121242653 (mod 11)

The current best idea would still need about 54 calculations

answer = 4

Can we exponentiate any faster?

OK, need a little more number theory for this one...

Fundamental lemma of powers?

If $(x \equiv_n y)$ Then $a^x \equiv_n a^y$?

NO!

 $(2 \equiv_3 5)$, but it is not the case that: $2^2 \equiv_3 2^5$

(Correct) Fundamental lemma of powers.

If $a \in Z_n^*$ and $x \equiv_{\phi(n)} y$ then $a^x \equiv_n a^y$

Equivalently,

for
$$a \in Z_n^*$$
, $a^x \equiv_n a^{x \mod \phi(n)}$

for
$$a \in Z_n^*$$
, $a^x \equiv_n a^{x \mod \phi(n)}$

Hence, we can compute a^m (mod n) while performing at most 2 [log₂ ϕ (n)] multiplies

where each time we multiply together numbers with log₂ n + 1 bits

343280³²⁷⁸⁴⁷³²⁴ mod 39 Step 1: reduce the base mod 39 Step 2: reduce the exponent mod $\phi(39) = 24$ you should check that gcd(343280,39)=1 to use lemma of powers Step 3: use repeated squaring to compute 2⁴, taking mods at each step

How do you prove the lemma for powers? for $a \in Z_n^{\,\star}, \ a^x \equiv_n a^{x \bmod \phi(n)}$

Use Euler's Theorem

For $a \in Z_n^*$, $a^{\phi(n)} \equiv_n 1$

Corollary: Fermat's Little Theorem

For p prime, $a \in Z_p^* \Longrightarrow a^{p-1} \equiv_p 1$

Proof of Euler's Theorem: for $a \in Z_n^*$, $a^{\phi(n)} \equiv_n 1$ Define $a Z_n^* = \{a *_n \times | \times \in Z_n^*\}$ for $a \in Z_n^*$ By the permutation property, $Z_n^* = aZ_n^*$ $\prod x \equiv_n \prod ax \text{ [as x ranges over } Z_n^* \text{]}$ $\prod x \equiv_n \prod x (a^{\text{size of } Zn^*})$ [Commutativity] $1 =_n a^{\text{size of } Zn^*}$ [Cancellation] $a^{\phi(n)} =_n 1$

