| Great Theoretical Ideas In CS |  |
| :---: | :---: |
| Victor Adamchik | CS 15-251 |
| Lecture 23 | Carnegie Mellon University |
| Number Theory and |  |
|  | ? |

( $a \bmod n$ ) means the remainder when $a$ is divided by $n$.

$$
a \bmod n=r
$$

$$
\Leftrightarrow
$$

$a=d n+r$ for some integer $d$ or
$a=n+r k$ for some integer $k$
$\equiv_{n}$ induces a natural partition of the integers into $n$ "residue" classes.
("residue" = what left over = "remainder")

Define residue class
[k] = the set of all integers that are congruent to k modulo n .

## Outline

Working modulo integer $n$
Definitions of $Z_{n}, Z_{n}{ }^{*}$
Fundamental lemmas of $+,-,{ }^{*}, /$
Extended Euclid Algorithm
Euler phi function $\phi(n)=\left|Z_{n}{ }^{*}\right|$
Fundamental lemma of powers
Euler Theorem


## $\equiv_{n}$ is an equivalence relation

In other words, it is
Reflexive: $a \equiv_{n} a$
Symmetric: $\left(a \equiv_{n} b\right) \Rightarrow\left(b \equiv_{n} a\right)$
Transitive: $\left(a \equiv_{\mathrm{n}} \mathrm{b}\right.$ and $\left.\mathrm{b} \equiv_{\mathrm{n}} \mathrm{c}\right) \Rightarrow\left(\mathrm{a} \equiv_{\mathrm{n}} \mathrm{c}\right)$

Why do we care about these residue classes?

Because we can replace any member of a residue class with another member when doing addition or multiplication mod $n$ and the answer will not change

To calculate: 249 * $504 \bmod 251$ just do $\quad-2$ * $2=-4=247$

Fundamental lemma of plus and times mod $n$ :

$$
\text { If }\left(x \equiv_{n} y\right) \text { and }\left(a \equiv_{n} b\right) \text {. Then }
$$

1) $x+a \equiv_{n} y+b$
2) $x * a \equiv_{n} y * b$

Another Simple Fact:
if $\left(x \equiv_{n} y\right)$ and $(k \mid n)$, then: $x \equiv_{k} y$
Example: $10 \equiv_{6} 16 \Rightarrow 10 \equiv_{3} 16$
Proof:

$$
\begin{gathered}
x=y+m n \\
n=a k \\
x=y+a m k \\
x=k y
\end{gathered}
$$

## A Unique Representation System Modulo n :

We pick one representative from each residue class and do all our calculations using these representatives.

Unsurprisingly, we use $0,1,2, \ldots, n-1$

Unique representation system mod 2
Finite set $Z_{2}=\{0,1\}$

| $+_{2}$ | 0 | 1 |
| :---: | :---: | :---: |
| $0 R$ | 0 | 1 |
| 1 | 1 | 0 |


| $*_{2}$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 0 | 1 |

Notation

$$
Z_{n}=\{0,1,2, \ldots, n-1\}
$$

Define operations $+_{n}$ and ${ }_{n}$ :

$$
\begin{aligned}
& a+n b=(a+b \bmod n) \\
& a{ }_{n} b=(a * b \bmod n)
\end{aligned}
$$

For addition tables, rows and columns always are a permutation of $Z_{n}$

| + | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 |
| 1 | 1 | 2 | 3 | 4 | 0 |
| 2 | 2 | 3 | 4 | 0 | 1 |
| 3 | 3 | 4 | 0 | 1 | 2 |
| 4 | 4 | 0 | 1 | 2 | 3 |


| $\mathbf{+}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0}$ | 0 | 1 | 2 | 3 | 4 | 5 |
| $\mathbf{1}$ | 1 | 2 | 3 | 4 | 5 |  |
| $\mathbf{2}$ | 2 | 3 | 4 | 5 | 0 | 1 |
| $\mathbf{3}$ | 3 | 4 | 5 |  | 1 | 2 |
| $\mathbf{4}$ | 4 | 5 | 0 | 1 | 2 | 3 |
| $\mathbf{5}$ | 5 |  |  | 2 | 3 | 4 |

Unique representation system mod 4
Finite set $Z_{4}=\{0,1,2,3\}$

| + | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 |
| 1 | 1 | 2 | 3 | 0 |
| 2 | 2 | 3 | 0 | 1 |
| 3 | 3 | 0 | 1 | 2 |


| $*$ | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 |
| 2 | 0 | 2 | 0 | 2 |
| 3 | 0 | 3 | 2 | 1 |

Some properties of the operation
["Closed"]
$x, y \in Z_{n} \Rightarrow x+n y \in Z_{n}$
["Associative"]
$x, y, z \in Z_{n} \Rightarrow\left(x+t_{n} y\right)+n z=x+t_{n}(y+n)$
["Commutative"]
$x, y \in Z_{n} \Rightarrow x+n=y+{ }_{n} x$
Similar properties also hold for

For multiplication, some rows and columns are permutation of $Z_{n}$, while others aren't...

what's happening here?

For addition, the permutation property means you can solve, say,

$$
4+x=1(\bmod 6)
$$

Subtraction mod $n$ is well-defined

Each row has a 0 , hence $-a$ is that element such that $a+(-a)=0$

$$
\Rightarrow a-b=a+(-b)
$$

| + | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |

For multiplication, if a row has a permutation you can solve, say, $5 * x=4(\bmod 6)$

$$
3^{*} x=\frac{4(\bmod 6)}{n o \text { nolutions! }}
$$

$$
3^{*} x=3(\bmod 6)
$$

multiple solutions!

$$
\begin{array}{|lllllll|}
\hline * & 0 & 1 & 2 & 3 & 4 & 5 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 & 4 & 5 \\
2 & 0 & 2 & 4 & 0 & 2 & 4 \\
\hline 3 & 0 & 3 & 0 & 3 & 0 & 3 \\
\hline 4 & 0 & 4 & 2 & 0 & 4 & 2 \\
\hline 5 & 0 & 5 & 4 & 3 & 2 & 1 \\
\hline
\end{array}
$$




## What's the pattern?

- exactly 8 distinct multiples of 3 modulo 8
- exactly 2 distinct multiples of 4 modulo 8
- exactly 1 distinct multiple of 8 modulo 8
- exactly 4 distinct multiples of 6 modulo 8
- exactly $\quad y / G C D(x, y) \quad$ distinct
multiples of $x$ modulo $y$


## Theorem:

There are exactly

$$
y / G C D(x, y)
$$

distinct multiples of $x$ modulo $y$

Hence,
only those values of $x$ with $\operatorname{GCD}(x, y)=1$
have $n$ distinct multiples
(i.e., the permutation property for ${ }_{n}$ on $Z_{n}$ )

Fundamental lemma of division (or cancelation) modulo $n$ :
if $\operatorname{GCD}(c, n)=1$, then $c a \equiv_{n} c b \Rightarrow a \equiv_{n} b$
Proof:
$c a={ }_{n} c b \Rightarrow n|(c a-c b) \Rightarrow n| c(a-b)$

But $\operatorname{GCD}(n, c)=1$, thus

$$
n \mid(a-b) \Rightarrow a={ }_{n} b
$$

If you want to extend to general $c$ and $n$
$c a \equiv_{n} c b \Rightarrow a \equiv_{n / g c d(c, n)} b$

Fundamental lemmas mod $n$ :

If $\left(x \equiv_{n} y\right)$ and $\left(a \equiv_{n} b\right)$. Then

1) $x+a \equiv_{n} y+b$
2) $x^{*} a \equiv_{n} y * b$
3) $x-a \equiv_{n} y-b$
4) $c x \equiv_{n} c y \Rightarrow a \equiv_{n} b$
if $\operatorname{gcd}(c, n)=1$


$$
\begin{gathered}
\mathrm{Z}_{6}=\{0,1,2,3,4,5\} \\
Z_{6}{ }^{*}=\{1,5\}
\end{gathered}
$$

| + | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 1 | 2 | 3 | 4 | 5 | 0 |
| 2 | 2 | 3 | 4 | 5 | 0 | 1 |
| 3 | 3 | 4 | 5 | 0 | 1 | 2 |
| 4 | 4 | 5 | 0 | 1 | 2 | 3 |
| 5 | 5 | 0 | 1 | 2 | 3 | 4 |


| $*$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 2 | 0 | 2 | 4 | 0 | 2 | 4 |
| 3 | 0 | 3 | 0 | 3 | 0 | 3 |
| 4 | 0 | 4 | 2 | 0 | 4 | 2 |
| 5 | 0 | 5 | 4 | 3 | 2 | 1 |

## We've got closure

Recall we proved that $Z_{n}$ was "closed" under addition and multiplication?

What about $Z_{n}{ }^{*}$ under multiplication?
Fact: if $a, b$ in $Z_{n}{ }^{*}$, then $a * b$ in $Z_{n}{ }^{*}$
Proof: if $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=1$,
then $\operatorname{gcd}(a b, n)=1$
then $\operatorname{gcd}(a b \bmod n, n)=1$
$Z_{12}{ }^{*}=\{0 \leq x<12 \mid \operatorname{gcd}(x, 12)=1\}$

$$
=\{1,5,7,11\}
$$

| ${ }^{*_{12}}$ | 1 | 5 | 7 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 5 | 7 | 11 |
| 5 | 5 | 1 | 11 | 7 |
| 7 | 7 | 11 | 1 | 5 |
| 11 | 11 | 7 | 5 | 1 |

$$
Z_{5}^{*}=\{1,2,3,4\} \quad=Z_{5} \backslash\{0\}
$$

| $*_{5}$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 4 |
| 2 | 2 | 4 | 1 | 3 |
| 3 | 3 | 1 | 4 | 2 |
| 4 | 4 | 3 | 2 | 1 |

For prime $p$, the set $Z_{p}{ }^{*}=Z_{p} \backslash\{0\}$

Proof:
It just follows from the definition!
For prime $p$, all $0<x<p$ satisfy $\operatorname{gcd}(, p)=1$

Euler Phi Function $\phi(n)$

$$
\phi(n)=\text { size of } Z_{n}^{*}
$$

$=$ number of $1 \leq k<n$ that

$$
\phi(12)=4
$$ are relatively prime to $n$.

$$
\begin{gathered}
\text { pprime } \\
\Rightarrow Z_{p}^{*}=\{1,2,3, \ldots, p-1\} \\
\Rightarrow \phi(p)=p-1
\end{gathered}
$$

$$
\begin{gathered}
Z_{12}{ }^{*}=\{0 \leq x<12 \mid \operatorname{gcd}(x, 12)=1\} \\
=\{1,5,7,11\}
\end{gathered}
$$

| $*_{12}$ | 1 | 5 | 7 | 11 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 5 | 7 | 11 |
| 5 | 5 | 1 | 11 | 7 |
| 7 | 7 | 11 | 1 | 5 |
| 11 | 11 | 7 | 5 | 1 |

Theorem: if $p, q$ distinct primes then

$$
\phi(p q)=(p-1)(q-1)
$$

$\mathrm{pq}=\#$ of numbers from 1 to pq
$p=\#$ of multiples of $q$ up to $p q$
$q=\#$ of multiples of $p$ up to $p q$
1 = \# of multiple of both $p$ and $q$ up to $p q$

$$
\begin{gathered}
\phi(p q)=p q-p-q+1=(p-1)(q-1) \\
\phi(15)=\phi\left(3^{\star} 5\right)=(3-1)(5-1)=8
\end{gathered}
$$

Multiplicative inverse of a mod $n$ $=$ number $b$ such that $a * b=1(\bmod n)$

Remember,
only defined for numbers $a$ in $Z_{n}$ *

What is the multiplicative inverse

$$
\begin{gathered}
\text { of } a=342952340 \text { in } \\
Z_{4230493243}=Z_{n} ?
\end{gathered}
$$

Answer: $a^{-1}=583739113$

How do you find multiplicative inverses fast?

Theorem: given positive integers $X, Y$, there exist integers $r$, $s$ such that

$$
r X+s Y=\operatorname{gcd}(X, Y)
$$

and we can find these integers fast!
Extended Euclid Algorithm
Now take $n$, and $a$ in $Z_{n}{ }^{\star}$

$$
\operatorname{gcd}(a, n) ? \quad a \text { in } Z_{n}{ }^{\star} \Rightarrow \operatorname{gcd}(a, n)=1
$$

Thus, we can find $r$ and $s$ s.t. $r^{*} a+s^{*} n=1$

$$
\text { then } r^{\star} a={ }_{n} 1
$$

$$
\text { so, } r=a^{-1} \bmod n
$$

## Euclid's Algorithm for GCD

Euclid( $A, B$ )
If $B=0$ then return $A$
else return Euclid( $B, A \bmod B$ )

Euclid(67,29)
Euclid(29,9)
Euclid $(9,2)$
Euclid(2,1)
$67-2 * 29=67 \bmod 29=9$

Euclid( 1,0 ) outputs 1

## Extended Euclid Algorithm

Let $\langle r, s\rangle$ denote the number $r^{*} 67+s^{*} 29=1$. Calculate all intermediate values in this representation.
$67=<1,0>\quad 29=<0,1>$
Euclid(67,29) $\quad 9=<1,0>-2^{*}<0,1>\quad 9=<1-2^{*} 0,0-2^{*} 1>$
Euclid(29,9) $2=<0,1>-3^{*}<1,-2>\quad 2=<0-3,1+6>$
Euclid $(9,2) \quad 1=<1,-2>-4^{*}<-3,7>\quad 1=<13,-30>$
Euclid(2,1) $\quad 0=<-3,7>-2^{*}<13,-30>\quad 0=<-29,67>$
Euclid( 1,0 ) outputs $\quad 1=13 * 67-30 * 29$

## Diophantine equation

Does the equality

$$
3 x+5 y=4
$$

have a solution where $x, y$ are integers?


The linear equation

$$
a x+b y=c
$$

has an integer solution in $x$ and $y$ iff $\operatorname{gcd}(a, b) \mid c$
$\Rightarrow>) \operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b)|b=>\operatorname{gcd}(a, b)|(a x+b y)$
$<=\operatorname{gcd}(a, b) \mid c=>c=z^{*} \operatorname{gcd}(a, b)$
On the other hand, $\operatorname{gcd}(a, b)=x_{1} a+y_{1} b$

$$
\begin{gathered}
z \operatorname{gcd}(a, b)=z x_{1} a+z y_{1} b \\
c=z x_{1} a+z y_{1} b
\end{gathered}
$$

\(\left.\begin{array}{c}The linear equation <br>

a x+b y=c\end{array}\right]\)| has an integer solution in $x$ and $y$ iff $\operatorname{gcd}(a, b) \mid c$ |
| :---: |
| $=>) g c d(a, b) \mid a$ and $g c d(a, b)\|b=>g c d(a, b)\|(a x+b y)$ |
| $\&=) \operatorname{gcd}(a, b) \mid c=>c=z^{*} g c d(a, b)$ |
| On the other hand, $g c d(a, b)=x_{1} a+y_{1} b$ |
| $z \operatorname{gcd}(a, b)=z x_{1} a+z y_{1} b$ |
| $c=z x_{1} a+z y_{1} b$ |

## Theorem

The linear equation

$$
a x+b y=c
$$

has an integer solution in $x$ and $y$ iff $\operatorname{gcd}(a, b) \mid c$

## Hilbert's $10^{\text {th }}$ problem

Hilbert asked for a universal method of solving all
Diophantine equations
$P\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$
with any number of unknowns and integer coefficients.

In 1970 Y. Matiyasevich proved that the Diophantine problem is unsolvable.


How do you compute...
$5^{8}$
using few multiplications?
First idea:

$$
\begin{array}{rlrlllll}
5 & 5^{2} & 5^{3} & 5^{4} & 5^{5} & 5^{6} & 5^{7} & 5^{8} \\
& =5^{\star} 5 \\
& =5^{2 \star} 5
\end{array}
$$

How do you compute...
$5^{8}$

Better idea:
$5 \quad 5^{2} \quad 5^{4} \quad 5^{8}$
Used only 3 mults
$=5 * 5$
$=5^{2 *} 5^{2}$
$=5^{4 *} 5^{4}$

How do you compute...

## $5^{13}$

Use repeated squaring again?
$\begin{array}{llll}5 & 5^{2} & 5^{4} & 5^{8}\end{array}$
Note that $13=8+4+1$ ooo $\quad 13_{10}=(1101)_{2}$
So $a^{13}=a^{8 *} a^{4 *} a^{1}$
Two more multiplies!

|  |
| :---: |
| Hence, we can compute |
| $a^{m}$ |
| while performing at most |
| $2\left\lfloor\log _{2} m\right\rfloor$ multiplies |
|  |

How do you compute...
$5^{13}(\bmod 11)$
First idea: Compute $5^{13}$ using 5 multiplies

$$
\begin{gathered}
55^{2} \quad 5^{4} \begin{array}{c}
5^{8} 5^{12} 5^{13}=1220703125 \\
=5^{8 \star} 5^{4}=5^{12 \star} 5
\end{array}
\end{gathered}
$$

then take the answer mod 11

$$
1220703125(\bmod 11)=4
$$

How do you compute...

## $5^{13}(\bmod 11)$

Better idea: keep reducing the answer mod 11

$$
\begin{array}{llllll}
5 & 5^{2} & 5^{4} & 5^{8} & 512 & 513 \\
& 25 & & =_{11} 81 & =_{11} 36 & =_{11} 15 \\
& ={ }_{11} 3 & =_{11} 9 & =_{11} 4 & { }_{=11} 3 & =_{11} 4
\end{array}
$$

How do you compute...
$5^{121242653}(\bmod 11)$
The current best idea would still
need about 54 calculations
answer = 4
Can we exponentiate any faster?

OK, need a little more number theory for this one...

Fundamental lemma of powers?

$$
\begin{gathered}
\text { If }\left(x \equiv_{n} y\right) \\
\text { Then } a^{x} \equiv_{n} a^{y} \text { ? } \\
\text { NO! } \\
\left(2 \equiv_{3} 5\right) \text {, but it is not } \\
\text { the case that: } 2^{2} \equiv_{3} 2^{5}
\end{gathered}
$$

Hence, we can compute

$$
a^{m}(\bmod n)
$$

while performing at mos $\dagger$
$2\left\lfloor\log _{2} m\right\rfloor$ multiplies
where each time we multiply
together numbers with $\left\lfloor\log _{2} n\right\rfloor+1$ bits

| OK, need a little more number |
| :---: |
| theory for this one... |
|  |

(Correct) Fundamental lemma of powers.

$$
\text { If } a \in Z_{n}^{*} \text { and } x \equiv_{\phi(n)} y \text { then } a^{x} \equiv_{n} a^{y}
$$

## Equivalently,

for $a \in Z_{n}{ }^{*}, a^{x} \equiv_{n} a^{x} \bmod \phi(n)$

for $a \in Z_{n}{ }^{*}, a^{x} \equiv_{n} a^{\times \bmod \phi(n)}$
Hence, we can compute $a^{m}(\bmod n)$
while performing at most
$2\left\lfloor\log _{2} \phi(n)\right\rfloor$ multiplies
where each time we multiply together numbers with $\left\lfloor\log _{2} n\right\rfloor+1$ bits

## $343280^{327847324} \bmod 39$

Step 1: reduce the base mod 39

Step 2: reduce the exponent $\bmod \phi(39)=24$
you should check that $\operatorname{gcd}(343280,39)=1$ to use lemma of powers

Step 3: use repeated squaring to compute $2^{4}$, taking mods at each step

Proof of Euler's Theorem: for $a \in Z_{n}{ }^{*}, a^{\phi(n)} \equiv_{n} 1$
Define $a Z_{n}{ }^{*}=\left\{a{ }_{n}{ }_{n} x \mid x \in Z_{n}{ }^{*}\right\}$ for $a \in Z_{n}{ }^{*}$ By the permutation property, $Z_{n}{ }^{*}=a Z_{n}{ }^{*}$ $\Pi x \equiv_{n}$ П ax [as $\times$ ranges over $Z_{n}{ }^{*}$ ] $\Pi x \equiv_{n} \Pi \times\left(a^{\text {size of } Z n^{*}}\right) \quad$ [Commutativity] $1=n a^{\text {size of } \mathrm{Zn}^{*}} \quad$ [Cancellation]

$$
a^{\phi(n)}=n_{n}
$$

How do you prove the lemma for powers?
for $a \in Z_{n}{ }^{*}, a^{x} \equiv_{n} a^{\times \bmod \phi(n)}$

## Use Euler's Theorem

For $a \in Z_{n}{ }^{*}, a^{\phi(n)} \equiv_{n} 1$
Corollary: Fermat's Little Theorem
For p prime, $a \in Z_{p}{ }^{*} \Rightarrow a^{p-1} \equiv_{p} 1$


