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A machine so simple that you can 
understand it in just one minute 
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The machine processes a string and accepts 
it if the process ends in a double circle 
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The unique string of length 0 will be denoted  
by ε and will be called the empty or null string 
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The machine accepts a string if the process 
ends in an accept state (double circle) 

states 

start state (q0) 
accept states (F) 

transitions 

ϵ 

Anatomy of a Deterministic Finite 
Automaton 

The alphabet Σ of a finite automaton is the 
set where the symbols come from, for 
example {0,1} 

The language L(M) of a finite automaton is 
the set of strings that it accepts 

The singular of automata is automaton. 

L(M) = {x∈Σ: M accepts x} 

It’s also called the  

           “language decided/accepted by M”. 
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L(M) = All strings of 0s and 1s 

The Language L(M) of Machine M 

0,1 

q0 

The language of a finite automaton is the set 
of strings that it accepts 

0 0 

1 

L(M) = { w | w has an even number of 1s} 

q0 

0 

q1 

1 
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The Language L(M) of Machine M 

What language does this DFA decide/accept? 

Q is the finite set of states 

Σ is the alphabet 

 : Q  Σ → Q  is the transition function 

q0  Q is the start state 

F  Q is the set of accept states 

A finite automaton is a 5-tuple M = (Q, Σ, , q0, F)  

L(M) = the language of machine M 
 = set of all strings machine M accepts 

Formal definition of DFAs Q  = {q0, q1, q2, q3} 

Σ = {0,1} 

 : Q  Σ → Q transition function 

q0  Q is start state 
F  = {q1, q2}  Q accept states 

M = (Q, Σ, , q0, F)  
where 

 0 1 

q0 q0 q1 

q1 q2 q2 

q2 q3 q2 

q3 q0 q2 

q2  
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M 

An automaton that accepts all 
and only those strings that 

contain 001 
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EXAMPLE 

Determine the language 
recognized by 

 0 

1 0,1 

L(M)={1,11,111, …} 
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Determine the language 
decided by 

L(M)={1, 01} 

  0  0,1 

0,1 

 1 

 1 

  0 

Membership problem 

Determine whether some 
word belongs to the language. 

A language L ⊆ Σ is regular if it is recognized by a 
deterministic finite automaton 

L = { w | w contains 001} is regular 

L = { w | w has an even number of 1s} is regular 

A language over Σ is a set of strings over Σ  

A language L ⊆ Σ is regular if there is  

a DFA which decides it. 

Regular Languages DFA Membership problem 

Determine whether some 
word belongs to the language. 

Theorem: The DFA Membership Problem is 
solvable in linear time. 

Let M = (Q, Σ, , q0, F) and w = w1...wm.  
Algorithm for DFA M: 
 p := q0; 
 for i := 1 to m do p := (p,wi); 
 if pF then return Yes else return No. 

Are all languages 
regular? 

Theorem: Any finite language is 
regular 

Theorem:  L = {0n1n : n∈ℕ} is not regular 

Notation: 

If a∈Σ is a symbol and n∈N then an denotes 

the string aaa∙∙∙a (n times). 

E.g., a3 means aaa, a5 means aaaaa,  

 a1 means a,     a0 means ϵ,          etc. 

Thus L = {ϵ, 01, 0011, 000111, 00001111, …}. 
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Theorem:  L = {0n1n : n∈ℕ} is not regular 

Wrong Intuition: 

For a DFA to decide L, it seems like it needs 

   to “remember” how many 0’s it sees at the 

   beginning of the string, so that it can  

   “check” there are equally many 1’s.   
 

But a DFA has only finitely many states —  

 shouldn’t be able to handle arbitrary n. 

L = strings where the number of 
occurrences of 01 is equal to the number 

of occurrences of 10 
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M accepts only the strings with an equal 
number of 01’s and 10’s! 

For example, 010110 

How to prove a language is not 
regular… 

Assume for contradiction there is a DFA M with 
L(M) = L. 

Argue (usually by Pigeonhole) there are two 
strings x and y which reach the same state in M. 

Show there is a string z such that xz∈L but yz∉L.  
Contradiction, since M accepts either both (or 
neither.) 

Theorem:  L = {0n1n : n∈ℕ} is not regular 

Full proof: 

Suppose M is a DFA deciding L with, say, k states. 

Let ri be the state M reaches after processing 0i. 

By Pigeonhole, there is a repeat among                   

r0, r1, r2, …, rk. So say that rs = rt for some s ≠ t. 

Since 0s1s ∈ L, starting from rs and processing 1s 

causes M to reach an accepting state. 

Theorem:  L = {0n1n : n∈ℕ} is not regular 

Full proof: 

So on input 0s1s ∈ L, M will reach an accepting state. 

M will process 0t, reach state rt = rs 

Consider input 0t1s ∉ L, s≠t. 

then M will process 1s, and reach an accepting state. 

                                                     Contradiction! 

Regular Languages 

Definition: A language L ⊆ Σ is regular if there is  

a DFA which decides it. 

Questions: 

 1.  Are all languages regular? 

2.  Are there other ways to tell if L is regular? 
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Equivalence of two DFAs 

Given a few equivalent machines, we are 
naturally interested in the smallest one 

with the least number of states. 

Definition: Two DFAs M1 and M2 over the same 
alphabet are equivalent if they 

accept the same language: L(M1) = L(M2). 

Union Theorem 

Given two languages, L1 and L2, define 
the union of L1 and L2 as  

L1  L2 = { w | w  L1 or w  L2 }  

Theorem: The union of two regular 
languages is also a regular language. 

Theorem: The union of two regular 
languages is also a regular language 

Proof (Sketch): Let  

M1 = (Q1, Σ, 1, q0, F1)  be finite automaton for L1 

 and  

M2 = (Q2, Σ, 2, q0, F2) be finite automaton for L2 

We want to construct a finite automaton  
M = (Q, Σ, , q0, F) that recognizes L = L1  L2  

Idea: Run both M1 and M2 at the same time. 

Union Theorem 

L1 =  strings with  

         even # of 1’s M1 

L2 =  strings x with 

        |x| div. by 3 

p0 p1 
0,1 

0,1 

p2 

0,1 
M2 

qeven 

qodd 

0 

0 

1 1 

Union Theorem 

M1 
qeven 

qodd 

0 

0 

1 1 
Input:     101001 

p0 p1 
0,1 

0,1 

p2 

0,1 
M2 

Union Theorem 

M1 
qeven 

qodd 

0 

0 

1 1 
Input:     101001 

p0 p1 
0,1 

0,1 

p2 

0,1 
M2 
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Union Theorem 

M1 
qeven 

qodd 
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Input:     101001 

p0 p1 
0,1 

0,1 

p2 

0,1 
M2 

Union Theorem 
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Union Theorem 
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Union Theorem 
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Union Theorem 

M1 
0 

0 

1 1 
Input:     101001 
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qeven 
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Accept. 

Union Theorem 

M1 
0 

1 1 

0,1 

0,1 0,1 
M2 

p1 p2 

qeven 

Make a DFA keeping 

track of both at once. 

p0 

qodd 0 



7 

Union Theorem 

0 

qeven, p0 qeven, p1 qeven, p2 

1 

qodd, p0 qodd, p1 qodd, p2 

0 

0 

0 0 

1 

1 1 

Q = pairs of states, one from M1 and one from M2 

= { (q1, q2) | q1  Q1 and q2  Q2 } 

= Q1  Q2 

The Regular Operations 

Union: A  B = { w | w  A or w  B }  

Intersection: A  B = { w | w  A and w  B }  

Negation: A = { w | w  A }  

Reverse: AR = { w1 …wk | wk …w1  A } 

Concatenation: A  B = { vw | v  A and w  B } 

Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

The Kleene closure: A* 

From the definition of the concatenation,  
we definite An, n =0, 1, 2, … recursively 

A0 = {ε} 
An+1 = An A 

Star: A* = { w1 …wk | k ≥ 0 and each wi  A } 

A* is a set consisting of concatenations  
of arbitrary many strings from A. 

U
0k

kAA*

The Kleene closure: A* 

What is A* of A={0,1}? 

All binary strings 

What is A* of A={11}? 

All binary strings of an even  
number of 1s 

Regular Languages Are Closed 
Under The Regular Operations 

Vocabulary:  Languages over alphabet Σ 

Axioms:               ∅,  {a} for each a∈Σ 

Deduction rules: 

 Given L1, L2, can obtain L1 ⋃ L2 

 Given L1, L2, can obtain L1 ⋅ L2 

 Given L, can obtain L*
 

An axiomatic system for regular languages 

The Kleene Theorem (1956) 

Every regular language over Σ can be  

constructed from ∅ and {a}, a ∈ Σ, using only  

the operations union, concatenation  

and Kleene star. 
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Reverse 

Reverse: AR = { w1 …wk | wk …w1  A } 

How to construct a DFA for the reversal  
of a language? 

The direction in which we 
read a string should  be 

irrelevant.  
 

If we flip transitions 
around we  might not get 

a DFA. 

 0 

1 0,1 

 q0  q1 

 0 

1 0,1 

 q0  q1 

Nondeterministic finite automaton 

 a 

  a 

 qk 

 a 

Allows transitions from qk on the same 
symbol to many states 

There is another type 
machine in which there 
may be several possible 

next states. Such 
machines called 

nondeterministic. 

Nondeterminism can arise from two different 
sources: 
-Transition nondeterminism 
-Initial state nondeterminism 

. 

Nondeterministic finite automaton 
(NFA) 

An NFA is defined using the same 
notations M = (Q, Σ, , I, F) 

as DFA except the initial states I and 
the transition function  assigns a set of 
states to each pair Q  Σ  of state and 

input. 

Nondeterministic finite automaton 
(NFA) 

Note, every DFA is automatically also  NFA. 

NFA for {0k | k is a multiple of 2 or 3} 

 ε 

 ε 

 0 

 0 

 0 

 0 

 0 

Find the language recognized by this 
NFA 

 1 

  0 

 0 

 0  0 

 0,1 
 1 

 1 

 s1 

 s2 

 s3 

 s4 

 s0 

L = {0n, 0n01, 0n11 | n = 0, 1, 2…} 
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What does it mean that for an NFA to 
recognize a string? 

 1 

  0 

 0 

 0 
 0 

 0,1 
 1 

 1 

 s1 

 s2 

 s3 

 s4 

 s0 

Since each input symbol xj (for j>1) takes the 
previous state to a set of states, we shall use a 
union of these states. 

What does it mean that for a NFA to 
recognize a string? 

 Here we are going formally define this. 

 For a state q and string w, *(q, w)  is the set of 
states that the NFA can reach when it reads the 
string w starting at the state q.  

 Thus for NFA= (Q, Σ, , q0, F), the function 
*: Q x Σ -> 2Q 

is defined by *(q, y xk) = p *(q,y) (p,xk)  

Find the language recognized by this 
NFA 

 1 

  0 

 1 

1  0 

 1 

 s0 

L = 1* (01, 1, 10) (00)* 

 0 

Nondeterministic finite automaton 

Theorem.  
If the language L is recognized by an NFA,  
then L is also recognized by a DFA. 

In other words,  
if we ask if there is a NFA that is not 
equivalent to any DFA. The answer is No. 

Theorem (Rabin, Scott 1959).  

        For every NFA there is an equivalent DFA. 

CMU prof. 

emeritus 

Nondeterministic finite automaton 

Rabin                  Scott 

For this they won the Turing Award. 

NFA vs. DFA 

Advantages. 
Easier to construct and manipulate. 
Sometimes exponentially smaller. 
Sometimes algorithms much easier. 

Drawbacks 
Acceptance testing slower. 
Sometimes algorithms more complicated. 
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Input: Text T of length k, string/pattern P of length n 

Pattern Matching 

Problem: Does pattern P appear inside text T? 

Naïve method:  

Cost: Roughly O(n k) comparisons 

a1, a2, a3, a4, a5, …, an 

may occur in images and DNA sequences 
unlikely in English text 

Pattern Matching 

Input:  Text T, length n.  Pattern P, length k. 

Output:  Does P occur in T? 

Automata solution: 

The language P is regular! 

There is some DFA MP which decides it. 

Once you build MP, feed in T:  takes time O(n). 

Build DFA from pattern 

The alphabet is {a, b}.    
The pattern is a a b a a a b b. 

 
To create a DFA we consider all prefixes 
ε, a, aa, aab, aaba, aabaa, aabaaa, aabaaab, 
aabaaabb 
 

These prefixes are states. The initial state 
is ε. The pattern is the accepting state. 

DFA Construction 
 a a b a a a b b 

0 1 
a 

b 

DFA Construction 
 a a b a a a b b 

0 1 
 
a 

b 

2 
 
a 

b 

DFA Construction 
 a a b a a a b b 

0 1 
 
a 

b 

2 
 
a 

b 

3 
b 

 
a 
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DFA Construction 
 a a b a a a b b 
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b 
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DFA Construction 
 a a b a a a b b 
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DFA Construction 
 a a b a a a b b 

0 1 
 
a 
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DFA Construction 
 a a b a a a b b 
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DFA Construction 
 a a b a a a b b 
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a 
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2 
 
a 

b 

3 
b 

 
a 

 
a 

b 

a 

b 

 
b 

b 

b 
4 5 6 7 8 

 
a 

a 

a 

The Knuth-Morris-Pratt Algorithm (1976) 

 1970 Cook published a paper about a possibility of 
existence of a linear time algorithm 

  
Knuth and Pratt developed an algorithm 

    
Morris discovered the same algorithm 

Pittsburgh native, 

CMU professor. 
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The KMP Algorithm - Motivation 

Algorithm compares the 
pattern to the text in 
left-to-right, but shifts 
the pattern more 
intelligently than the 
brute-force algorithm.  

When a mismatch 
occurs, we compute the 
length of the longest 
prefix of P that is a 
proper suffix of P. 

 

x 

j 

a b a a b 

a b a a b a 

a b a a b a 

No need to 
repeat these 
comparisons 

Resume 
comparing 

here 

Here’s What 
You Need to 

Know… 

Languages 
DFAs 
The regular operations 
 0n1n is not regular 
Union Theorem 
Kleene’s Theorem 
NFAs 
Application: KMP 
  
  
 


