| | Great Theoretical Ideas in CS |
| :--- | ---: | ---: | ---: |
| V. Adamchik 15-251 | |
| Lecture 21 | |

Outline
DFAs
Regular Languages
On1n is not regular
Union Theorem
Kleene's Theorem
NFAs
Application: KMP

Anatomy of a Deterministic Finite Automaton

The singular of automata is automaton.
The alphabet Σ of a finite automaton is the set where the symbols come from, for example $\{0,1\}$

The language $L(M)$ of a finite automaton is the set of strings that it accepts
$L(M)=\{x \in \Sigma: M$ accepts $x\}$
It's also called the
"language decided/accepted by M ".

The Language $L(M)$ of Machine M

$$
L(M)=\text { All strings of } 0 s \text { and } 1 \mathrm{~s}
$$

The language of a finite automaton is the set of strings that it accepts

The Language $L(M)$ of Machine M

What language does this DFA decide/accept?
$L(M)=\{w \mid w$ has an even number of $1 s\}$

Formal definition of DFAs

A finite automaton is a 5-tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Q is the finite set of states
Σ is the alphabet
$\delta: Q \times \Sigma \rightarrow Q$ is the transition function
$q_{0} \in Q$ is the start state
$F \subseteq Q$ is the set of accept states
$L(M)=$ the language of machine M $=$ set of all strings machine M accepts

Regular Languages

A language over Σ is a set of strings over Σ
A language $L \subseteq \Sigma$ is regular if it is recognized by a deterministic finite automaton

A language $L \subseteq \Sigma$ is regular if there is a DFA which decides it.
$L=\{w \mid w$ contains 001\} is regular
$L=\{w \mid w$ has an even number of $1 s\}$ is regular

Membership problem

Determine whether some word belongs to the language.

DFA Membership problem

Determine whether some word belongs to the language.

Theorem: The DFA Membership Problem is solvable in linear time.

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and $w=w_{1} \ldots w_{m}$. Algorithm for DFA M:

$$
\mathrm{p}:=q_{0}
$$

$$
\text { for } i:=1 \text { to } m \text { do } p:=\delta\left(p, w_{i}\right) \text {; }
$$

if $p \in F$ then return Yes else return No.

Theorem: $L=\left\{0^{n 1} 1^{n}: n \in \mathbb{N}\right\}$ is not regular
Notation:
If $a \in \Sigma$ is a symbol and $n \in N$ then a^{n} denotes the string aaa $\cdots a$ (n times).
E.g., a^{3} means aaa, a^{5} means aaaaa, a^{1} means a, a^{0} means ϵ etc.

Thus $L=\{\epsilon, 01,0011,000111,00001111, \ldots\}$.

Theorem: $L=\left\{O^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular
Wrong Intuition:
For a DFA to decide L, it seems like it needs to "remember" how many O's it sees at the beginning of the string, so that it can "check" there are equally many 1 's.
But a DFA has only finitely many states shouldn't be able to handle arbitrary n.
$L=$ strings where the number of occurrences of 01 is equal to the number of occurrences of 10

M accepts only the strings with an equal number of 01's and 10's! For example, 010110

Theorem: $L=\left\{0^{n} 1^{n}: n \in \mathbb{N}\right\}$ is not regular Full proof:
Suppose M is a DFA deciding L with, say, k states.
Let r_{i} be the state M reaches after processing 0^{i}.
By Pigeonhole, there is a repeat among
$r_{0}, r_{1}, r_{2}, \ldots, r_{k}$. So say that $r_{s}=r_{+}$for some $s \neq \dagger$.

Since $0^{s} 1^{s} \in L$, starting from r_{s} and processing $1^{\text {s }}$ causes M to reach an accepting state.

Theorem: $L=\left\{0^{n 1 n}: n \in \mathbb{N}\right\}$ is not regular Full proof:
So on input $0 \leq 1 s \in L, M$ will reach an accepting state.
Consider input $0^{\dagger} 1^{s} \notin L, s \neq \dagger$.
M will process 0^{\dagger}, reach state $r_{+}=r_{s}$
then M will process $1^{\text {s }}$, and reach an accepting state.
Contradiction!

Regular Languages

Definition: A language $L \subseteq \Sigma$ is regular if there is a DFA which decides it.

Questions:

1. Are all languages regular?
2. Are there other ways to tell if L is regular?

Union Theorem

Given two languages, L_{1} and L_{2}, define the union of L_{1} and L_{2} as

$$
L_{1} \cup L_{2}=\left\{w \mid w \in L_{1} \text { or } w \in L_{2}\right\}
$$

Theorem The union of two regular languages is also a regular language.

Theorem: The union of two regular languages is also a regular language

Proof (Sketch): Let
$M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0}, F_{1}\right)$ be finite automaton for L_{1} and
$M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0}, F_{2}\right)$ be finite automaton for L_{2}

We want to construct a finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that recognizes $L=L_{1} \cup L_{2}$

Idea: Run both M_{1} and M_{2} at the same time.

The Kleene closure: A^{*}
Star: $A^{*}=\left\{w_{1} \ldots w_{k} \mid k \geq 0\right.$ and each $\left.w_{i} \in A\right\}$

From the definition of the concatenation, we definite $A^{n}, n=0,1,2, \ldots$ recursively

$$
A^{0}=\{\varepsilon\}
$$

$$
A^{n+1}=A^{n} A
$$

A^{*} is a set consisting of concatenations of arbitrary many strings from A.

The Regular Operations

Union: $A \cup B=\{w \mid w \in A$ or $w \in B\}$
Intersection: $A \cap B=\{w \mid w \in A$ and $w \in B\}$
Negation: $\neg A=\{w \mid w \notin A\}$
Reverse: $A^{R}=\left\{w_{1} \ldots w_{k} \mid w_{k} \ldots w_{1} \in A\right\}$
Concatenation: $A \cdot B=\{v w \mid v \in A$ and $w \in B\}$
Star: $A^{*}=\left\{w_{1} \ldots w_{k} \mid k \geq 0\right.$ and each $\left.w_{i} \in A\right\}$

The Kleene closure: A^{*}
What is A^{*} of $A=\{0,1\}$?
All binary strings

What is A^{*} of $A=\{11\} ?$

All binary strings of an even number of 1 s

Regular Languages Are Closed Under The Regular Operations

An axiomatic system for regular languages
Vocabulary: Languages over alphabet Σ
Axioms:
$\emptyset,\{a\}$ for each $a \in \Sigma$
Deduction rules:
Given L_{1}, L_{2}, can obtain $L_{1} \cup L_{2}$
Given L_{1}, L_{2}, can obtain $L_{1} \cdot L_{2}$
Given L, can obtain L*

The Kleene Theorem (1956)

Every regular language over Σ can be constructed from \emptyset and $\{a\}, a \in \Sigma$, using only the operations union, concatenation and Kleene star.

Nondeterministic finite automaton (NFA)

Nondeterminism can arise from two different sources:
-Transition nondeterminism
-Initial state nondeterminism

Nondeterministic finite automaton

There is another type machine in which there may be several possible next states. Such machines called nondeterministic.

Allows transitions from q_{k} on the same symbol to many states

Nondeterministic finite automaton

 (NFA)An NFA is defined using the same notations $M=(Q, \Sigma, \delta, I, F)$ as DFA except the initial states I and the transition function δ assigns a set of states to each pair $Q \times \Sigma$ of state and input.

Note, every DFA is automatically also NFA.

NFA for $\left\{0^{k} \mid k\right.$ is a multiple of 2 or 3$\}$

Find the language recognized by this NFA

$$
L=\left\{0^{n}, 0^{n} 01,0^{n 11} \mid n=0,1,2 \ldots\right\}
$$

What does it mean that for an NFA to recognize a string?

Since each input symbol x_{j} (for $j>1$) takes the previous state to a set of states, we shall use a union of these states.

What does it mean that for a NFA to recognize a string?

Here we are going formally define this.

For a state q and string $w, \delta^{*}(q, w)$ is the set of states that the NFA can reach when it reads the string w starting at the state q.

$$
\begin{aligned}
& \text { Thus for NFA }=\left(Q, \Sigma, \delta, q_{0}, F\right) \text {, the function } \\
& \delta^{\star}: Q \times \Sigma \rightarrow 2^{Q} \\
& \text { is defined by } \quad \delta^{\star}\left(q, y x_{k}\right)=\cup_{p \in \delta^{\star}(q, y)} \delta\left(p, x_{k}\right)
\end{aligned}
$$

Find the language recognized by this NFA

$L=1^{*}(01,1,10)(00)^{*}$

Nondeterministic finite automaton

Theorem (Rabin, Scott 1959).
For every NFA there is an equivalent DFA.
For this they won the Turing Award.

Nondeterministic finite automaton

Theorem.
If the language L is recognized by an NFA, then L is also recognized by a DFA.

In other words, if we ask if there is a NFA that is not equivalent to any DFA. The answer is No.

NFA vs. DFA

Advantages.
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.
Sometimes algorithms more complicated.
Pattern Matching
-nput: Text T of length k, string/pattern P of length n
Problem: Does pattern P appear inside text T?
Naïve method:
$a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots, a_{n}$
Cost: Roughly $O(n k)$ comparisons
may occur in images and DNA sequences
unlikely in English text

Pattern Matching

Input: Text T, length n. Pattern P, length k. Output: Does P occur in T?

Automata solution:

The language P is regular!
There is some DFA M_{p} which decides it. Once you build M_{p}, feed in T : takes time $O(n)$.

Build DFA from pattern

The alphabet is $\{a, b\}$.
The pattern is $a a b a a a b b$.
To create a DFA we consider all prefixes $\varepsilon, a, a a, a a b, a a b a, a a b a a, ~ a a b a a a, ~ a a b a a a b$, aabaaabb

These prefixes are states. The initial state is ε. The pattern is the accepting state.

The Knuth-Morris-Pratt Algorithm (1976)
1970 Cook published a paper about a possibility of existence of a linear time algorithm

Knuth and Pratt developed an algorithm

Morris discovered the same algorithm

The KMP Algorithm - Motivation

Algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm. When a mismatch occurs, we compute the length of the longest prefix of P that is a proper suffix of P.

Languages
DFAs
The regular operations $0^{n 1} 1^{n}$ is not regular Union Theorem
Kleene's Theorem NFAs
Application: KMP

Here's What You Need to Know...

