

Anatomy of a Deterministic Finite Automaton

The singular of automata is automaton.

The alphabet Σ of a finite automaton is the set where the symbols come from, for example $\{0,1\}$

The language L(M) of a finite automaton is the set of strings that it accepts

 $L(M) = \{x \in \Sigma : M \text{ accepts } x\}$ It's also called the

"language decided/accepted by M".

Formal definition of DFAs A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$ Q is the finite set of states Σ is the alphabet $\delta : Q \times \Sigma \rightarrow Q$ is the transition function $q_0 \in Q$ is the start state $F \subseteq Q$ is the set of accept states L(M) =the language of machine M= set of all strings machine M accepts

Regular Languages

A language over Σ is a set of strings over Σ

- A language $L \subseteq \Sigma$ is regular if it is recognized by a deterministic finite automaton
 - A language $L \subseteq \Sigma$ is regular if there is a DFA which decides it.
 - L = { w | w contains 001} is regular
 - L = { w | w has an even number of 1s} is regular

DFA Membership problem

Determine whether some word belongs to the language.

Theorem: The DFA Membership Problem is solvable in linear time.

Let $M = (Q, \Sigma, \delta, q_0, F)$ and $w = w_1...w_m$. Algorithm for DFA M: $p := q_0$; for i := 1 to m do p := $\delta(p, w_i)$; if $p \in F$ then return Yes else return No.

Notation:

If $a \in \Sigma$ is a symbol and $n \in N$ then a^n denotes the string $aaa \cdots a$ (n times).

Thus L = { ϵ , 01, 0011, 000111, 00001111, ...}.

Wrong Intuition:

- For a DFA to decide L, it *seems* like it needs to "remember" how many 0's it sees at the beginning of the string, so that it can "check" there are equally many 1's.
- But a DFA has only finitely many states shouldn't be able to handle arbitrary n.

How to prove a language is not regular...

Assume for contradiction there is a DFA M with L(M) = L.

Argue (usually by Pigeonhole) there are two strings \times and y which reach the same state in M.

Show there is a string z such that $xz \in L$ but $yz \notin L$. Contradiction, since M accepts either both (or neither.)

Theorem: L = { $0^n1^n : n \in \mathbb{N}$ } is not regular Full proof: Suppose M is a DFA deciding L with, say, k states. Let r_i be the state M reaches after processing 0^i . By Pigeonhole, there is a repeat among $r_0, r_1, r_2, ..., r_k$. So say that $r_s = r_t$ for some $s \neq t$. Since $0^{s_1s} \in L$, starting from r_s and processing 1^s causes M to reach an accepting state.

Theorem: L = $\{0^n1^n : n \in \mathbb{N}\}$ is not regular

Full proof:

So on input $0^{s}1^{s} \in L$, M will reach an accepting state.

Consider input $O^{\dagger}I^{s} \notin L$, $s \neq t$.

M will process 0^{\dagger} , reach state $r_{t} = r_{s}$

then M will process 1^s, and reach an accepting state.

Contradiction!

Regular Languages

Definition: A language $L\subseteq\Sigma$ is regular if there is a DFA which decides it.

Questions:

- 1. Are all languages regular?
- 2. Are there other ways to tell if L is regular?

Equivalence of two DFAs

Definition: Two DFAs M_1 and M_2 over the same alphabet are equivalent if they accept the same language: $L(M_1) = L(M_2)$.

> Given a few equivalent machines, we are naturally interested in the smallest one with the least number of states.

Union Theorem

Given two languages, L₁ and L₂, define the union of L₁ and L₂ as L₁ \cup L₂ = { w | w \in L₁ or w \in L₂ }

Theorem: The union of two regular languages is also a regular language.

 M_2 = (Q_2, \Sigma, $\delta_2,\,q_0,\,F_2)$ be finite automaton for L_2

We want to construct a finite automaton M = (Q, $\Sigma, \delta, \, q_0, \, F)$ that recognizes L = $L_1 \cup L_2$

Idea: Run both M_1 and M_2 at the same time.

The Kleene closure: A*

Star: $A^* = \{ w_1 \dots w_k \mid k \ge 0 \text{ and each } w_i \in A \}$

From the definition of the concatenation, we definite A^n , n =0, 1, 2, ... recursively $A^0 = \{\epsilon\}$ $A^{n+1} = A^n A$

A* is a set consisting of concatenations of arbitrary many strings from A.

The Kleene closure: A*

What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even number of 1s

Regular Languages Are Closed Under The Regular Operations

An axiomatic system for regular languages

Vocabulary: Languages over alphabet Σ

Axioms: \emptyset , {a} for each $a \in \Sigma$

Deduction rules:

Given L_1 , L_2 , can obtain $L_1 \cup L_2$ Given L_1 , L_2 , can obtain $L_1 \cdot L_2$ Given L, can obtain L*

The Kleene Theorem (1956)

Every regular language over Σ can be constructed from \emptyset and {a}, a $\in \Sigma$, using only the operations union, concatenation and Kleene star.

Nondeterministic finite automaton (NFA) Nondeterminism can arise from two different sources: -Transition nondeterminism -Initial state nondeterminism .

Nondeterministic finite automaton (NFA) An NFA is defined using the same notations $M = (Q, \Sigma, \delta, I, F)$ as DFA except the initial states I and the transition function δ assigns a set of states to each pair $Q \times \Sigma$ of state and input.

Note, every DFA is automatically also NFA.

Nondeterministic finite automaton

Theorem.

If the language L is recognized by an NFA, then L is also recognized by a DFA.

In other words, if we ask if there is a NFA that is not equivalent to any DFA. The answer is No.

Nondeterministic finite automatonTheorem (Rabin, Scott 1959).
For every NFA there is an equivalent DFA.For this they won the Turing Award.Image: Scott state of the state of the

NFA vs. DFA

Advantages.

Easier to construct and manipulate. Sometimes exponentially smaller. Sometimes algorithms much easier.

Drawbacks

Acceptance testing slower. Sometimes algorithms more complicated.

Pattern Matching

Input: Text T of length k, string/pattern P of length n

Problem: Does pattern P appear inside text T? Naïve method:

Cost: Roughly O(n k) comparisons

may occur in images and DNA sequences unlikely in English text

Pattern Matching

Input: Text T, length n. Pattern P, length k. Output: Does P occur in T?

Automata solution:

The language P is regular! There is some DFA M_P which decides it. Once you build M_P , feed in T: takes time O(n).

Build DFA from pattern

The alphabet is {a, b}. The pattern is a a b a a a b b.

To create a DFA we consider all prefixes $\epsilon,\,a,\,aa,\,aab,\,aaba,\,aabaa,\,aabaaa,\,aabaaab,\,aabaaabb$

These prefixes are states. The initial state is $\epsilon.$ The pattern is the accepting state.

Languages DFAs The regular operations Oⁿ¹ⁿ is not regular Union Theorem Kleene's Theorem NFAs Application: KMP