
1

Finite Automata

Great Theoretical Ideas in CS
V. Adamchik CS 15-251

Lecture 21 Carnegie Mellon University

DFAs
Regular Languages
 0n1n is not regular
Union Theorem
Kleene’s Theorem
NFAs
Application: KMP

Outline

A machine so simple that you can
understand it in just one minute



Deterministic Finite Automata 0
0,1

0 0

1

1

1

0111 111

11

1

The machine processes a string and accepts
it if the process ends in a double circle

ϵ

The unique string of length 0 will be denoted
by ε and will be called the empty or null string

0
0,1

0 0

1

1

1

0111 111

11

1

The machine accepts a string if the process
ends in an accept state (double circle)

states

start state (q0)
accept states (F)

transitions

ϵ

Anatomy of a Deterministic Finite
Automaton

The alphabet Σ of a finite automaton is the
set where the symbols come from, for
example {0,1}

The language L(M) of a finite automaton is
the set of strings that it accepts

The singular of automata is automaton.

L(M) = {x∈Σ: M accepts x}

It’s also called the

 “language decided/accepted by M”.

2

L(M) = All strings of 0s and 1s

The Language L(M) of Machine M

0,1

q0

The language of a finite automaton is the set
of strings that it accepts

0 0

1

L(M) = { w | w has an even number of 1s}

q0

0

q1

1

1

The Language L(M) of Machine M

What language does this DFA decide/accept?

Q is the finite set of states

Σ is the alphabet

 : Q Σ → Q is the transition function

q0 Q is the start state

F Q is the set of accept states

A finite automaton is a 5-tuple M = (Q, Σ, , q0, F)

L(M) = the language of machine M
 = set of all strings machine M accepts

Formal definition of DFAs Q = {q0, q1, q2, q3}

Σ = {0,1}

 : Q Σ → Q transition function

q0 Q is start state
F = {q1, q2} Q accept states

M = (Q, Σ, , q0, F)
where

 0 1

q0 q0 q1

q1 q2 q2

q2 q3 q2

q3 q0 q2

q2

0
0,1

0 0

1

1

1

q0

q1

q3

M

An automaton that accepts all
and only those strings that

contain 001

{0}
 0

1

{00}
 0

1

{001}
1

0 0,1

EXAMPLE

Determine the language
recognized by

 0

1 0,1

L(M)={1,11,111, …}

3

Determine the language
decided by

L(M)={1, 01}

 0 0,1

0,1

 1

 1

 0

Membership problem

Determine whether some
word belongs to the language.

A language L ⊆ Σ is regular if it is recognized by a
deterministic finite automaton

L = { w | w contains 001} is regular

L = { w | w has an even number of 1s} is regular

A language over Σ is a set of strings over Σ

A language L ⊆ Σ is regular if there is

a DFA which decides it.

Regular Languages DFA Membership problem

Determine whether some
word belongs to the language.

Theorem: The DFA Membership Problem is
solvable in linear time.

Let M = (Q, Σ, , q0, F) and w = w1...wm.
Algorithm for DFA M:
 p := q0;
 for i := 1 to m do p := (p,wi);
 if pF then return Yes else return No.

Are all languages
regular?

Theorem: Any finite language is
regular

Theorem: L = {0n1n : n∈ℕ} is not regular

Notation:

If a∈Σ is a symbol and n∈N then an denotes

the string aaa∙∙∙a (n times).

E.g., a3 means aaa, a5 means aaaaa,

 a1 means a, a0 means ϵ, etc.

Thus L = {ϵ, 01, 0011, 000111, 00001111, …}.

4

Theorem: L = {0n1n : n∈ℕ} is not regular

Wrong Intuition:

For a DFA to decide L, it seems like it needs

 to “remember” how many 0’s it sees at the

 beginning of the string, so that it can

 “check” there are equally many 1’s.

But a DFA has only finitely many states —

 shouldn’t be able to handle arbitrary n.

L = strings where the number of
occurrences of 01 is equal to the number

of occurrences of 10

1

1
0

1

0

0

0

1
0

1

M accepts only the strings with an equal
number of 01’s and 10’s!

For example, 010110

How to prove a language is not
regular…

Assume for contradiction there is a DFA M with
L(M) = L.

Argue (usually by Pigeonhole) there are two
strings x and y which reach the same state in M.

Show there is a string z such that xz∈L but yz∉L.
Contradiction, since M accepts either both (or
neither.)

Theorem: L = {0n1n : n∈ℕ} is not regular

Full proof:

Suppose M is a DFA deciding L with, say, k states.

Let ri be the state M reaches after processing 0i.

By Pigeonhole, there is a repeat among

r0, r1, r2, …, rk. So say that rs = rt for some s ≠ t.

Since 0s1s ∈ L, starting from rs and processing 1s

causes M to reach an accepting state.

Theorem: L = {0n1n : n∈ℕ} is not regular

Full proof:

So on input 0s1s ∈ L, M will reach an accepting state.

M will process 0t, reach state rt = rs

Consider input 0t1s ∉ L, s≠t.

then M will process 1s, and reach an accepting state.

 Contradiction!

Regular Languages

Definition: A language L ⊆ Σ is regular if there is

a DFA which decides it.

Questions:

 1. Are all languages regular?

2. Are there other ways to tell if L is regular?

5

Equivalence of two DFAs

Given a few equivalent machines, we are
naturally interested in the smallest one

with the least number of states.

Definition: Two DFAs M1 and M2 over the same
alphabet are equivalent if they

accept the same language: L(M1) = L(M2).

Union Theorem

Given two languages, L1 and L2, define
the union of L1 and L2 as

L1 L2 = { w | w L1 or w L2 }

Theorem: The union of two regular
languages is also a regular language.

Theorem: The union of two regular
languages is also a regular language

Proof (Sketch): Let

M1 = (Q1, Σ, 1, q0, F1) be finite automaton for L1

 and

M2 = (Q2, Σ, 2, q0, F2) be finite automaton for L2

We want to construct a finite automaton
M = (Q, Σ, , q0, F) that recognizes L = L1 L2

Idea: Run both M1 and M2 at the same time.

Union Theorem

L1 = strings with

 even # of 1’s M1

L2 = strings x with

 |x| div. by 3

p0 p1
0,1

0,1

p2

0,1
M2

qeven

qodd

0

0

1 1

Union Theorem

M1
qeven

qodd

0

0

1 1
Input: 101001

p0 p1
0,1

0,1

p2

0,1
M2

Union Theorem

M1
qeven

qodd

0

0

1 1
Input: 101001

p0 p1
0,1

0,1

p2

0,1
M2

6

Union Theorem

M1
qeven

qodd

0

0

1 1
Input: 101001

p0 p1
0,1

0,1

p2

0,1
M2

Union Theorem

M1
qeven

qodd

0

0

1 1
Input: 101001

p0 p1
0,1

0,1

p2

0,1
M2

Union Theorem

M1
qeven

qodd

0

0

1 1
Input: 101001

p0
0,1

0,1

p2

0,1
M2

p1

Union Theorem

M1
qeven

qodd

0

0

1 1
Input: 101001

p0
0,1

0,1 0,1
M2

p2 p1

Union Theorem

M1
0

0

1 1
Input: 101001

0,1

0,1 0,1
M2

p1 p2 p0

qeven

qodd

Accept.

Union Theorem

M1
0

1 1

0,1

0,1 0,1
M2

p1 p2

qeven

Make a DFA keeping

track of both at once.

p0

qodd 0

7

Union Theorem

0

qeven, p0 qeven, p1 qeven, p2

1

qodd, p0 qodd, p1 qodd, p2

0

0

0 0

1

1 1

Q = pairs of states, one from M1 and one from M2

= { (q1, q2) | q1 Q1 and q2 Q2 }

= Q1 Q2

The Regular Operations

Union: A B = { w | w A or w B }

Intersection: A B = { w | w A and w B }

Negation: A = { w | w A }

Reverse: AR = { w1 …wk | wk …w1 A }

Concatenation: A B = { vw | v A and w B }

Star: A* = { w1 …wk | k ≥ 0 and each wi A }

The Kleene closure: A*

From the definition of the concatenation,
we definite An, n =0, 1, 2, … recursively

A0 = {ε}
An+1 = An A

Star: A* = { w1 …wk | k ≥ 0 and each wi A }

A* is a set consisting of concatenations
of arbitrary many strings from A.

U
0k

kAA*

The Kleene closure: A*

What is A* of A={0,1}?

All binary strings

What is A* of A={11}?

All binary strings of an even
number of 1s

Regular Languages Are Closed
Under The Regular Operations

Vocabulary: Languages over alphabet Σ

Axioms: ∅, {a} for each a∈Σ

Deduction rules:

 Given L1, L2, can obtain L1 ⋃ L2

 Given L1, L2, can obtain L1 ⋅ L2

 Given L, can obtain L*

An axiomatic system for regular languages

The Kleene Theorem (1956)

Every regular language over Σ can be

constructed from ∅ and {a}, a ∈ Σ, using only

the operations union, concatenation

and Kleene star.

8

Reverse

Reverse: AR = { w1 …wk | wk …w1 A }

How to construct a DFA for the reversal
of a language?

The direction in which we
read a string should be

irrelevant.

If we flip transitions
around we might not get

a DFA.

 0

1 0,1

 q0 q1

 0

1 0,1

 q0 q1

Nondeterministic finite automaton

 a

 a

 qk

 a

Allows transitions from qk on the same
symbol to many states

There is another type
machine in which there
may be several possible

next states. Such
machines called

nondeterministic.

Nondeterminism can arise from two different
sources:
-Transition nondeterminism
-Initial state nondeterminism

.

Nondeterministic finite automaton
(NFA)

An NFA is defined using the same
notations M = (Q, Σ, , I, F)

as DFA except the initial states I and
the transition function assigns a set of
states to each pair Q Σ of state and

input.

Nondeterministic finite automaton
(NFA)

Note, every DFA is automatically also NFA.

NFA for {0k | k is a multiple of 2 or 3}

 ε

 ε

 0

 0

 0

 0

 0

Find the language recognized by this
NFA

 1

 0

 0

 0 0

 0,1
 1

 1

 s1

 s2

 s3

 s4

 s0

L = {0n, 0n01, 0n11 | n = 0, 1, 2…}

9

What does it mean that for an NFA to
recognize a string?

 1

 0

 0

 0
 0

 0,1
 1

 1

 s1

 s2

 s3

 s4

 s0

Since each input symbol xj (for j>1) takes the
previous state to a set of states, we shall use a
union of these states.

What does it mean that for a NFA to
recognize a string?

 Here we are going formally define this.

 For a state q and string w, *(q, w) is the set of
states that the NFA can reach when it reads the
string w starting at the state q.

 Thus for NFA= (Q, Σ, , q0, F), the function
*: Q x Σ -> 2Q

is defined by *(q, y xk) = p *(q,y) (p,xk)

Find the language recognized by this
NFA

 1

 0

 1

1 0

 1

 s0

L = 1* (01, 1, 10) (00)*

 0

Nondeterministic finite automaton

Theorem.
If the language L is recognized by an NFA,
then L is also recognized by a DFA.

In other words,
if we ask if there is a NFA that is not
equivalent to any DFA. The answer is No.

Theorem (Rabin, Scott 1959).

 For every NFA there is an equivalent DFA.

CMU prof.

emeritus

Nondeterministic finite automaton

Rabin Scott

For this they won the Turing Award.

NFA vs. DFA

Advantages.
Easier to construct and manipulate.
Sometimes exponentially smaller.
Sometimes algorithms much easier.

Drawbacks
Acceptance testing slower.
Sometimes algorithms more complicated.

10

Input: Text T of length k, string/pattern P of length n

Pattern Matching

Problem: Does pattern P appear inside text T?

Naïve method:

Cost: Roughly O(n k) comparisons

a1, a2, a3, a4, a5, …, an

may occur in images and DNA sequences
unlikely in English text

Pattern Matching

Input: Text T, length n. Pattern P, length k.

Output: Does P occur in T?

Automata solution:

The language P is regular!

There is some DFA MP which decides it.

Once you build MP, feed in T: takes time O(n).

Build DFA from pattern

The alphabet is {a, b}.
The pattern is a a b a a a b b.

To create a DFA we consider all prefixes
ε, a, aa, aab, aaba, aabaa, aabaaa, aabaaab,
aabaaabb

These prefixes are states. The initial state
is ε. The pattern is the accepting state.

DFA Construction
 a a b a a a b b

0 1
a

b

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

3
b

a

11

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

3
b

a

4
a

b

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

3
b

a

4

a

b

5

a

b

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

3
b

a

4

a

b

5

a

b

a 6

b

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

3
b

a

4

a

b

5

a

b

a 6

b

7
b

a

DFA Construction
 a a b a a a b b

0 1

a

b

2

a

b

3
b

a

a

b

a

b

b

b

b
4 5 6 7 8

a

a

a

The Knuth-Morris-Pratt Algorithm (1976)

 1970 Cook published a paper about a possibility of
existence of a linear time algorithm

Knuth and Pratt developed an algorithm

Morris discovered the same algorithm

Pittsburgh native,

CMU professor.

12

The KMP Algorithm - Motivation

Algorithm compares the
pattern to the text in
left-to-right, but shifts
the pattern more
intelligently than the
brute-force algorithm.

When a mismatch
occurs, we compute the
length of the longest
prefix of P that is a
proper suffix of P.

x

j

a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here

Here’s What
You Need to

Know…

Languages
DFAs
The regular operations
 0n1n is not regular
Union Theorem
Kleene’s Theorem
NFAs
Application: KMP

