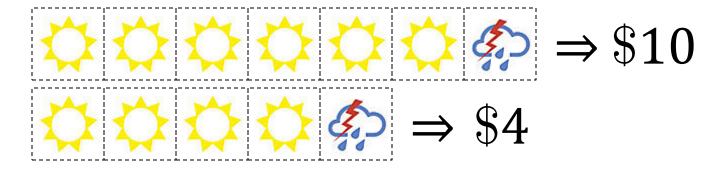


SKI RENTAL

• You are on a ski vacation; you can buy skis for B or rent for 1/day

• You're very spoiled: You'll go home when


it's not sunny

• Rent or buy when B = 5?

What is the complexity of the problem?

SKI RENTAL

- Now assume you don't know in advance how many days of sunshine there are
- Every day of sunshine you need to decide whether to rent or buy
- Algorithm: Rent for B days, then buy

SKI RENTAL

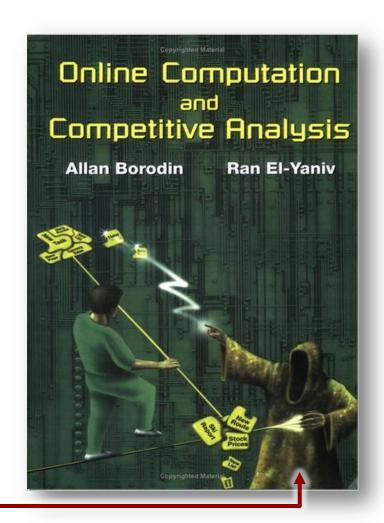
Vote: Assume $B \geq 8$. How bad can the "rent B days, then buy" algorithm be compared to the optimal solution in the worst case?

$$(1.) ALG(I) = 2 \cdot OPT(I)$$

2.
$$ALG(I) = 3 \cdot OPT(I)$$

3.
$$ALG(I) = \frac{B}{2} \cdot OPT(I)$$

4.
$$ALG(I) = B \cdot OPT(I)$$


COMPETITIVE RATIO

- For a minimization problem and c > 1, ALG is a c-competitive algorithm if for every instance I, $ALG(I) \le c \cdot OPT(I)$
- For a maximization problem and c < 1, ALG is a c-competitive algorithm if for every instance I, $ALG(I) \ge c \cdot OPT(I)$
- The difference from approximation algorithms is that here ALG is online, whereas OPT(I) is the optimal offline solution

SKI RENTAL, REVISITED

- Our ski-rental algorithm is 2-competitive
- Renting for B-1 days is $\left(\frac{2B-1}{R}\right)$ -competitive
- We prove that no online algorithm can do better by constructing an evil adversary

SKI RENTAL, REVISITED

• Theorem: No online algorithm for the ski rental problem is α -competitive for $\alpha < \frac{2B-1}{B}$

Proof:

- Alg is defined by renting for K days and buying on day K+1
- $_{\circ}$ Evil adversary makes it rain on day K+2
- $K \geq B$: OPT(I) = B, $ALG(I) = K + B \geq 2B$
- ∘ $K \le B 2$: OPT(I) = K + 1, $ALG(I) = K + B \ge 2K + 2$ ■

PANCAKES, REVISITED

Competitive analysis

Pancakes

"The Bth ski number is $\frac{2B-1}{B}$,"

SKI RENTAL, REVISITED

Proving lower bounds for online algorithms is much easier than for approximation algorithms!

- Hard drive holds N pages, memory holds k pages
- When a page of the hard drive is needed, it is brought into the memory
- If it's already in the memory, we have a hit, otherwise we have a miss
- If the memory is full, we may need to evict a page
- Paging algorithm tries to minimize misses

Memory

Request sequence

 $1 \mid 2$

3

4

 $4 \mid 2 \mid 3$

4 1

4 1 3

 $4 \quad 1 \quad 3$

 $4 \mid 1 \mid 3$

4 1 3 2

 $2 \mid 1 \mid 3$

 $4 \ 1 \ 3 \ 2 \ 4$

Memory

Request sequence

1 3 2 4

- Four online paging algorithms (start with $1, \ldots, k$) in memory
- LRU (least recently used)
- LFU (least frequently used)
- FIFO (first in first out): memory works like a queue; evict the page at the head and enqueue the new page
- LIFO (last in first out): memory works like a stack; evict top, push new page

EXAMPLE: LIFO

Memor	V
	_

Request sequence

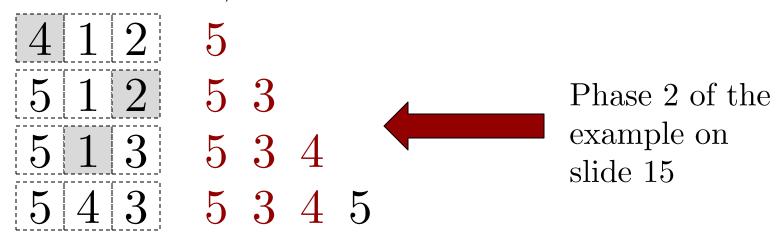
4 3 4 3

4 3 4 3 4

- Vote: What is the smallest α for which LIFO is α -competitive?
 - $\alpha = 2$
 - 2. $\alpha = k$ (size of memory)
 - 3. $\alpha = N$ (number of pages)
 - $\alpha = \infty$ (can't be bounded with these parameters)

• Vote: What is the smallest α for which LFU is α -competitive?

- $\alpha = 2$
- $\alpha = k$
- $\alpha = N$
- $\alpha = \infty$


- Theorem: LRU is k-competitive
- Proof:
 - We divide the request sequence into phases; phase 1 starts at the first page request; each phase is the longest possible with at most krequests for distinct pages
 - Example with k = 3:

 $4 \ 1 \ 2 \ 1 \ 5 \ 3 \ 4 \ 5 \ 1 \ 2 \ 3$ Phase 2 Phase 1 Phase 3

- Theorem: LRU is k-competitive
- Proof (continued):
 - $_{\circ}$ Denote m=#stages, and by p_{j}^{l} the jth distinct page in phase i
 - o Pages $p_1^i, \dots, p_k^i, p_1^{i+1}$ are all distinct
 - If OPT hasn't missed on pages $p_2^i, ..., p_k^i$, it will miss on p_1^{i+1} , i.e., it misses at least once for every new phase (including phase 1)
 - $\Rightarrow OPT \geq m$

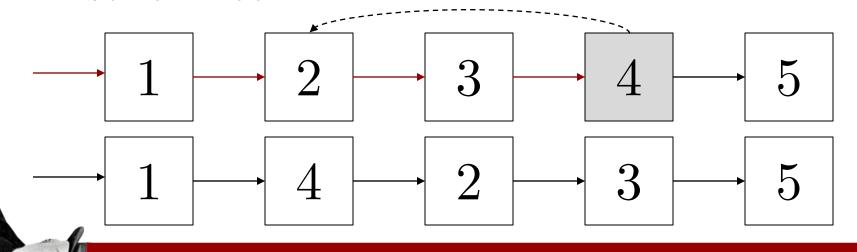
- Theorem: LRU is k-competitive
- Proof (continued):
 - LRU misses at most once on each distinct page in a phase
 - $_{\circ}$ Therefore, $ALG \leq km$

- **Theorem:** FIFO is k-competitive
- **Proof:** Essentially the same
- **Theorem:** No online alg for the paging problem is α -competitive for $\alpha < k$

• Proof:

• At each step the evil adversary requests the missing page in $\{1, ..., k+1\} \Rightarrow$ miss every time

```
\begin{array}{|c|c|c|c|c|c|}\hline 1 & 2 & 3 & 4 \\\hline 4 & 2 & 3 & 4 & 1 \\\hline 4 & 2 & 1 & 4 & 1 & 3 \\\hline 4 & 3 & 1 & 4 & 1 & 3 & 2 \\\hline 4 & 3 & 2 & 4 & 1 & 3 & 2 & 1 \\\hline \end{array}
```



• Proof:

If OPT evicts a page, it will take at least krequests to miss again

1	2	3	4				
1	4	3	4	1			
1	4	3	4	1	3		
1	4	3	4	1	3	2	
1	$\boxed{4}$	2	4	1	3	2	1

LIST UPDATE

- Linked list of length *n*
- Each request asks for an element; traverse links to element; pay 1 for each such link
- Allowed to move requested element up the list for free

LIST UPDATE

- Three list update algorithms
- Transpose: Move requested element one position up (if it's not first)
- Move to front: Move requested element to the head of the list
- Frequency counter: Keep track of how many times each element was requested; move requested element past elements that were requested less frequently

LIST UPDATE

- Vote: Which algorithm is α -competitive for a constant α ?
 - Transpose
 - Move to front
 - Frequency counter

WHAT WE HAVE LEARNED

- Definitions:
 - Competitive algorithm
 - Ski rental, paging, list update problems
- Algorithms:
 - Competitive algs for ski rental, paging
- Principles:
 - Evil adversary!

