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Definition 
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A graph G is a pair (V,E) where  
V is a set of vertices (or nodes)  
E is a set of edges connecting 
the vertices 
 
A self-loop is an edge that 
connects to the same vertex 
twice 
A multi-edge is a set of two or 
more edges that have the same 
two vertices 
A graph is simple if it has no 
multi-edges or self-loops. 

More terms 

Directed: an edge is an ordered pair of vertices  

Undirected: edge is unordered pair of vertices 

Weighted: (a cost associated with an edge) 

Path (is a sequence of no-repeated vertices) 

Cycle (the start and end vertices are the same) 

Acyclic 

Connected or Disconnected 

The degree of a vertex (in an undirected graph  

is the number of edges associated with it.) 

The handshaking theorem 

Let G=(V,E) be an undirected graph  

with V vertices and E edges. Then 

In a directed graph: 

VxVx

outdeg(x)indeg(x)E

Vx

deg(x)E 2

Given a graph with 7 vertices; 3 of  

them of degree two and 4 of degree one.   

Is this  graph is connected?  
 

Exercise 

No, the graph has only 5 edges. 

Vx

deg(x)E 2
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Adjacency List 

or 

Adjacency Matrix 

 
Vertex X is adjacent to vertex Y if and only if 
there is an edge (X, Y) between them. 

 

Representing Graphs Adjacency List Representation 

A 

B 

C 

D 

E 

null 

  B 

B 

A 
A 

C 

C D 

   D 

D 
E 

E 

E 

Adjacency Matrix Representation 

1 

0 

2 3 

4 

0 1 0 0 1 
0 0 0 1 1 
1 0 0 1 0 
0 0 0 0 0 

0 0 1 0 0 

Representing Graphs 

Adjacency List Representation is used for 
representation of the sparse graphs.  
 
Adjacency Matrix Representation is used for 
representation of the dense graphs.  

Not Tree Not Tree 

Trees 

A tree is a connected simple 
graph without cycles. 

Theorem:  Let G be a graph with V nodes 
and E edges 

The following are equivalent (TFAE) : 

1. G is a tree (connected, acyclic) 

3. G is connected and V = E + 1  

4. G is acyclic and V = E + 1  

5. G is acyclic and if any two non-adjacent 
nodes are joined by an edge, the resulting 

graph has exactly one cycle 

2. Every two nodes of G are joined by a 
unique path 
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To prove this, it suffices to show 
 1  2  3  4  5  1 

We’ll just show 
1  2  3  4  

and leave the rest to the reader 

 1  2  1. G is a tree (connected, acyclic) 

2. Every two nodes of G are 
joined by a unique path 

Proof: (by contradiction) 

Assume G is a tree that has two nodes 
connected by two different paths: 

Then there exists a cycle! 

 2  3  2. Every two nodes of G are 
joined by a unique path 

Proof: (by strong induction) 

Assume true for every graph with < V vertices 

3. G is connected and V = E + 1  

Let G have V nodes and let x and y be adjacent 

Then V = V1 + V2 = E1 + E2 + 2 = E + 1  

x y 
G1 G2 

 3  4  3. G is connected and V = E + 1  

4. G is acyclic and V = E + 1  

Proof: by contradiction 

Assume, G has  a cycle with k vertices. 

Start adding nodes and edges until you cover the 
whole graph. Number of edges in the graph will 
be at least V, since the cycle has k vertices and k 
edges. 

Corollary:  Every nontrivial tree has at least 
two vertices of degree 1. 

Proof (by contradiction): 

Assume all but one of the vertices in the 
tree have degree at least 2. Can we? 

Under our assumption 2E = ∑degi ≥ 2(V-1)+1 

In any graph, sum of the degrees = 2E 

Then the total number of edges in the tree 
is at least E ≥ (2V-1)/2 = V - 1/2 > V - 1 

Contradiction, since in a tree E = V - 1 

Using the above property, we can now begin to 
discuss Cayley’s formula that tells us how many 
different trees we can construct on n vertices.  
 
How many labeled trees are there with three 
nodes? 

2 1 3 3 1 2 

1 2 3 3 2 1 

1 3 2 2 3 1 

Two labeled trees 
with the same set of 
labels are isomorphic 

iff  
they have the same 
adjacency matrix. 

Cayley’s Formula 
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Graph Isomorphism 

Definition. Two simple graphs G and H are 
isomorphic G  H if there is  a vertex 
bijection VH->VG that preserves adjacency 
and non-adjacency structures. 

Does not preserve adjacency 

It’s not bijective 

Graph Isomorphism 

The graph isomorphism problem has no known 
polynomial time algorithm which works for an 
arbitrary graph. 

1->a, 2->e, 3->b, 4->f, 5->g, 6->c, 7->h, 8->d 

How many labeled trees are there 
with four nodes? 

1 

2 

4 

3 
These are 

called 
spanning 

trees, for 
a complete 
graph of 4 
vertices. 

How many labeled trees are there 
with five nodes? 

5  
labelings 

125 labeled trees 

5 x 4 x 3 
labelings 

5!/2 
labelings 

The number of 
labeled trees on n 

nodes is nn-2 

Cayley’s Formula (1889) 

Put another way, it counts the 
number of spanning trees of a 
complete graph 

We are going to find a bijection between the 
set of sequences and the set of labeled trees. 

Prϋfer Encoding (1918) 

A Prϋfer sequence is a sequence of n−2 numbers, 
each being one of the numbers 1 through n. We 
should initially note that indeed there are nn−2 

Prϋfer sequences for any given n. 

bijection: T(n) -> P(n-2) 
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Take a tree and label vertices from 1 to n in any 
manner. 

Encoding a tree into a Prϋfer sequence 

Take the vertex with the smallest label whose 
degree is equal to 1, delete it from the tree and 
write down the value of its only neighbor. 

Repeat this process until only two vertices remain. 

So now we have a sequence of n − 2 elements 
encoded from our tree. 

1 

4 

3 

5 

2 

6 

1 

4 

3 

5 

6 

Encoding a tree into a Prϋfer sequence 

1 

4 

3 

5 

2 

6 

1 

4 

3 

5 

6 

Sequence: 5 Sequence: 

Encoding a tree into a Prϋfer sequence 

1 

4 

3 

5 

6 

1 

4 

5 

6 

Sequence: 5,1,1 Sequence: 5, 1  

Encoding a tree into a Prϋfer sequence 

1 5 

6 

5 

6 

Sequence: 5, 1, 1, 5 Sequence: 5, 1, 1, 5  

Encoding a tree into a Prϋfer sequence 

1 

4 

3 

5 

2 

6 

P = 5, 1, 1, 5 

Notice that all of the vertices of degree 1 do 
not occur in P. No leaves in P. 

Every vertex in P has degree equal to 1 + r, where 
r is the number of times that vertex appears in 
our sequence P. 

Exercise: write the Prϋfer 
sequence 

8 

6 

2 

5 

3 

1 

4 

7 

Sequence: 1, 2, 1, 3, 3, 5 
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Reconstructing a tree 

Let k be the smallest number in L that is not in P. 
Let aj be the fist number in the Prϋfer sequence P.  
Connect k and aj with an edge. 
Remove k from L and aj from P. 

Repeat this process until all elements of P have 
been exhausting (n-2 times)  

Connect the last two vertices in L with an edge. 

Given P = {a1,…,an-2} and the list L = {1,…, n}  

Reconstructing a tree 

5 

2 

L=1,2,3,4,5,6 

5 

2 

P = 1, 1, 5 

1 

3 

P = 5, 1, 1, 5 

L=1,3,4,5,6 

Reconstructing a tree 

5 

2 

P = 1, 5 

1 

3 

L=1,4,5,6 

4 

5 

2 

P = 5 

1 

3 

L=1,5,6 

4 

5 

2 

1 

3 

L=5,6 

4 
6 

Exercise 

Given P = {1, 2, 1, 3, 3, 5}. 
Reconstruct a tree. 

Exercise 

L = {1,2,3,4,5,6,7,8} 
 

P = {1, 2, 1, 3, 3, 5} 

4 1 

6 2 

3 7 5 8 

Bijection between Prüfer 
Sequences and Labeled 

Trees 

 

Let T be a set of labeled tree of n 
vertices 
Let P be a set of Prüfer sequences of 
length n-2 
 
A map  f: T-> P is a bijection. 
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A map  f: T-> P is injective. 

We need to show that two different trees T1 ,T2 
generate different Prϋfer sequences. 
By Induction on the number of vertices. 

Base case: n = 2, two vertices joined by an edge. 

Assume it’s true for n, prove it for n+1. 

Take the lowest-labeled leaf in T1 and in T2. 

Case 1: Those two leaves are different 

Case 2:  Same, but neighbors not 

Case 3:  Leaves and neighbors are the same 

A map  f: T-> P is surjective. 

We need to show that any sequence P={a1,…,an-2} 
generates at least one tree on L={1, …, n} 
By Induction on the number of vertices. 

Base case: n = 2, P = {}. 

Assume it’s true for n, prove it for n+1. 

Take the lowest vkL s.t. vkP 

Consider P’=P\a1 and L’= L\vk. By IH there is T’. 

Form T from T’ by adding vk joined with a1. 

Since a1 is internal, T is a tree. 

Minimum spanning tree  

(MST) is a spanning tree of  

a weighted graph with  

minimum total edge weight 

ORD 

PIT 

ATL 

STL 

DEN 

DFW 

DCA 

10 
1 

9 

8 

6 

3 

2 5 

7 

4 

The weight of a spanning tree is the 
sum of the weights on all the edges 
which comprise the spanning tree. 

The Minimum Spanning Tree The MST 

Fred Hacker’s algorithm: 
 

Find ALL spanning trees and then pick 
one with the minimum cost. 

 
What’s wrong with this idea? 

 

The number of spanning trees 
in Kn is

 nn-2 

Boruvka’s Algorithm (1926) 

Kruskal’s Algorithm (1956) 

Prim's Algorithm (1957)     

 

The Minimum Spanning Tree 

Lemma: Let X be any subset of the vertices of 
G, and let edge e be the smallest edge 
connecting X to G-X. Then e is part of the 
minimum spanning tree.  

Property of the MST 
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Property of the MST - proof 

X 

G-X 

u 
v 

e 

Let T be the MST && e  not in T 

e is the 
smallest edge  

Property of the MST - proof 

X 

G-X 

u 
v 

e 

There exists a unique path in T from u to v. 

e is the 
smallest edge 

e is not in T  

Property of the MST - proof 

X 

G-X 

u 
v 

e 

Since T1 =T –f + e < T thus T is not the MST 

Let T be the MST && e  not in T 

e is the 
smallest edge 

 

f > e  

f 

Planar Graphs 

A graph is planar if it can be drawn 
in the plane without crossing edges 

= 

Planar Graphs 

A graph is planar if it can be drawn in the 
plane without crossing edges 

A graph is planar if and only if it can be 
embedded in a sphere. This is useful because 
often a sphere is more convenient to work 
with. 

A sphere can be 1-1 mapped 
(except 1 point) to the plane 
and vice-versa.  E.g. the 
stereographic projection: 

Faces 

A planar graph when drawn 
in the plane, splits the 

plane into disjoint faces. 

4 faces 
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Euler’s Formula 

Generalized for 
any polyhedron, 

For a cube: 
v=8 
e=12 
f=6 

If G is a connected planar graph with V 
vertices, E edges and F faces, then   

V – E + F = 2 

Proof of Euler’s Formula 

The proof is by induction on edges. 

For connected arbitrary planar graphs V – E + F = 2  

Start with a single edge and 2 vertices: 
 V=2, E=1, F=1.  Check. 

Add the edges in an order so that what we’ve 
added so far is connected. 

There are two cases to consider. 

(1) The edge connects two vertices already there. 
(2)The edge connects the current graph to a new 

vertex 

In case (1) we add a new edge (E++) and we split 
one face in two (F++).  So V-E+F is preserved. 

In case (2) we add a new vertex (V++) and a 
new edge (E++). So again V-E+F is preserved. 

 
Theorem: In any connected planar graph with at 
least 3 vertices: 

E ≤ 3V - 6 
 

By means of this theorem 
we can prove, for example, 
that a complete graph K5 is 
not planar 

K5  has 5 vertices and 10 edges, thus 
E = 10 ≤ 3x5 – 6 = 9 

which is clearly false 

E = O(V) 

 
Theorem: In any connected planar graph with at 
least 3 vertices: 

E ≤ 3V - 6 
Proof. 

1. If the graph has no cycles,  
 

E = V-1 ≤ V ≤ V +(2V-6) = 3V – 6, 
 

since V ≥ 3, and therefore 2V-6 ≥ 0, 

 
Theorem: In any connected planar graph with at 
least 3 vertices: 

E ≤ 3V - 6 
Proof (cont.)  

2. If the graph has a cycle. We will count the 
number of pairs (edge, face). 

Each face is bounded by at least 3 edges: 
∑(edge, face)  ≥ 3 F  

Each edge is associated with at most 2 faces: 
∑(edge, face) ≤ 2 E 

It follows,         3 F ≤ 2 E 
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Theorem: In any connected planar graph with at 
least 3 vertices: 

E ≤ 3V - 6 
 

Proof (cont.) We found, 3 F ≤ 2 E 

By Euler’s theorem : 
2 = V – E + F 

 
6 = 3V – 3E + 3F ≤ 3V – 3E + 2E = 3V - E 

 
QED 

 

Theorem: In any connected planar graph with at 
least 3 vertices: 

E ≤ 3 V - 6 

Planar Graphs 

Lemma: In any connected planar graph with at 
least 3 vertices: 

3 F ≤ 2 E 

Theorem: In any connected planar graph with V 
vertices, E edges and F faces, then   

V – E + F = 2 

K5  can be embedded on the torus 

Always there is a surface so any graph can be 
embedded to. 

Embedding a graph onto a surface means drawing 
the graph on the surface such that no edges cross.  

More embeddings 

Blanuša graph on a trefoil knot 

Here’s What 
You Need to 

Know… 

Graph Isomorphism 
Cayley’s Formula 
Prϋfer Encoding 
Minimum Spanning Trees 
Planar Graphs 
Euler’s Polyhedra Theorem 


