

#### Plan

Graph Representations Counting Trees Cayley's Formula Prüfer Sequence Minimum Spanning Trees Planar Graphs Euler's Polyhedra Theorem



#### More terms

Directed: an edge is an ordered pair of vertices Undirected: edge is unordered pair of vertices Weighted: (a cost associated with an edge) Path (is a sequence of no-repeated vertices) Cycle (the start and end vertices are the same) Acyclic

Connected or Disconnected

The degree of a vertex (in an undirected graph is the number of edges associated with it.)





## **Representing Graphs**

Adjacency List or Adjacency Matrix

Vertex X is *adjacent* to vertex Y if and only if there is an edge (X, Y) between them.











To prove this, it suffices to show  $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$ 

We'll just show  $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$  and leave the rest to the reader

































## Reconstructing a tree

Given P =  $\{a_1, \dots, a_{n-2}\}$  and the list L =  $\{1, \dots, n\}$ 

Let k be the smallest number in L that is not in P. Let  $a_j$  be the fist number in the Prüfer sequence P. Connect k and  $a_j$  with an edge. Remove k from L and  $a_i$  from P.

Repeat this process until all elements of P have been exhausting (n-2 times)

Connect the last two vertices in L with an edge.











# A map f: T-> P is injective.

We need to show that two different trees  $T_1$ ,  $T_2$  generate different Prüfer sequences. By Induction on the number of vertices.

Base case: n = 2, two vertices joined by an edge. Assume it's true for n, prove it for n+1.

Take the lowest-labeled leaf in  $T_1$  and in  $T_2$ .

Case 1: Those two leaves are different

Case 2: Same, but neighbors not

Case 3: Leaves and neighbors are the same

# A map f: T-> P is surjective.

We need to show that any sequence P={ $a_1,...,a_{n-2}$ } generates at least one tree on L={1, ..., n} By Induction on the number of vertices.

Base case: n = 2, P = {}.

Assume it's true for n, prove it for n+1.

Take the lowest  $v_k \in L \text{ s.t. } v_k \notin P$ 

Consider P'=P\a\_1 and L'= L\v\_k. By IH there is T'.

Form T from T' by adding  $v_k$  joined with  $a_1$ .

Since  $a_1$  is internal, T is a tree.



















A sphere can be 1-1 mapped (except 1 point) to the plane and vice-versa. E.g. the stereographic projection:











Theorem: In any connected planar graph with at least 3 vertices: E  $\leq$  3V - 6

Proof.

1. If the graph has no cycles,

 $E = V-1 \le V \le V + (2V-6) = 3V - 6$ ,

since  $V \ge 3$ , and therefore  $2V-6 \ge 0$ ,



<u>Theorem</u>: In any connected planar graph with at least 3 vertices:  $E \le 3V - 6$ Proof (cont.) We found,  $3F \le 2E$ By Euler's theorem : 2 = V - E + F $6 = 3V - 3E + 3F \le 3V - 3E + 2E = 3V - E$ QED









Know...