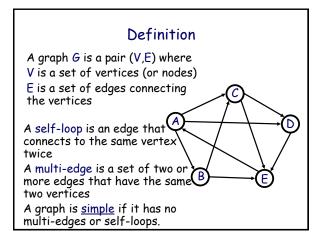


Plan

Graph Representations Counting Trees Cayley's Formula Prüfer Sequence Minimum Spanning Trees Planar Graphs Euler's Polyhedra Theorem

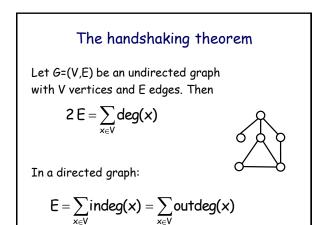


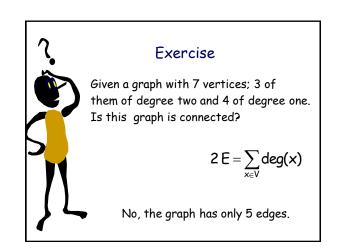
More terms

Directed: an edge is an ordered pair of vertices Undirected: edge is unordered pair of vertices Weighted: (a cost associated with an edge) Path (is a sequence of no-repeated vertices) Cycle (the start and end vertices are the same) Acyclic

Connected or Disconnected

The degree of a vertex (in an undirected graph is the number of edges associated with it.)

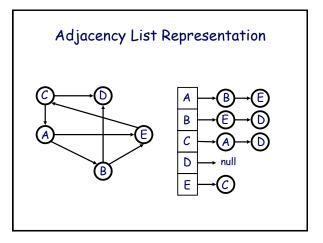


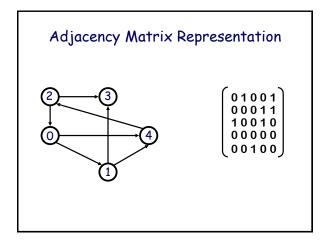


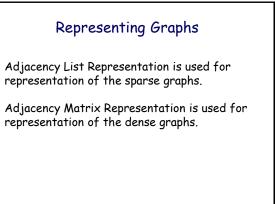
Representing Graphs

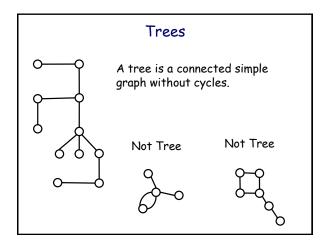
Adjacency List or Adjacency Matrix

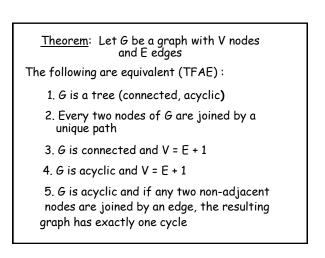
Vertex X is *adjacent* to vertex Y if and only if there is an edge (X, Y) between them.





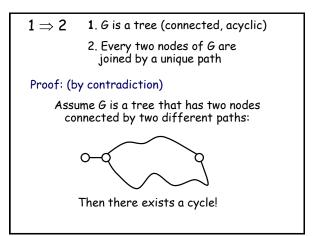


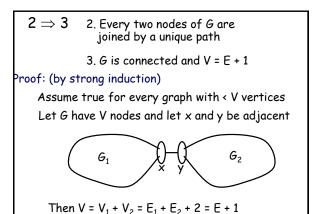


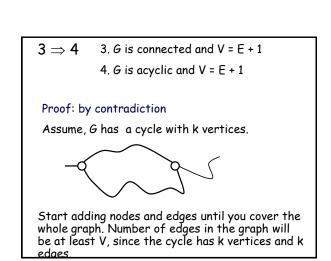


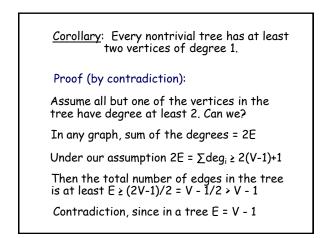
To prove this, it suffices to show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$

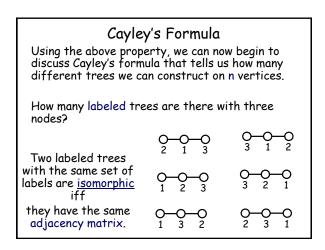
We'll just show $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$ and leave the rest to the reader

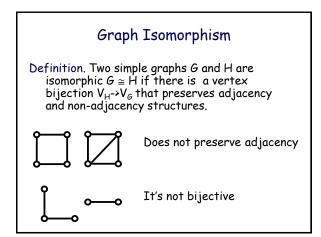


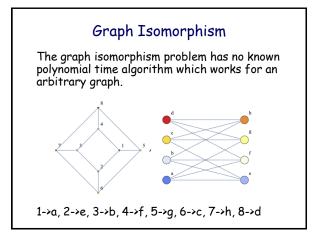


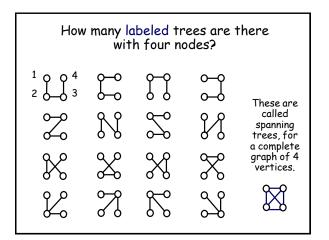


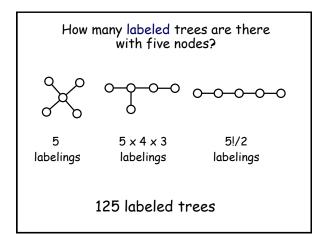


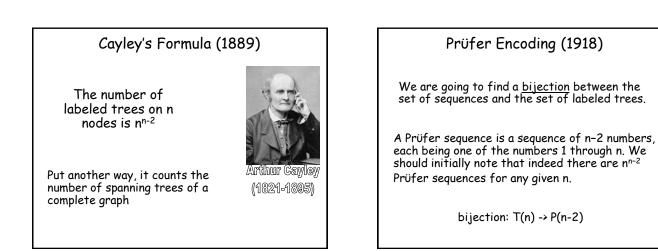


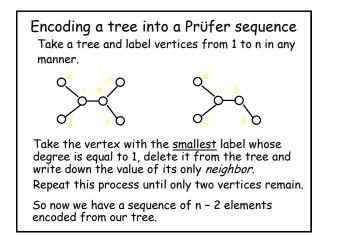


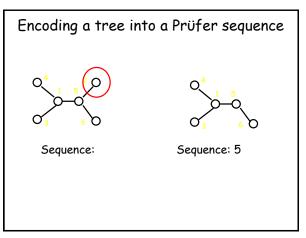


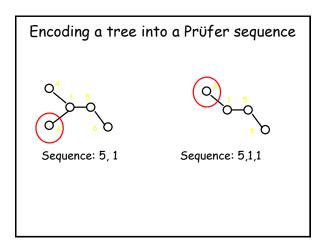


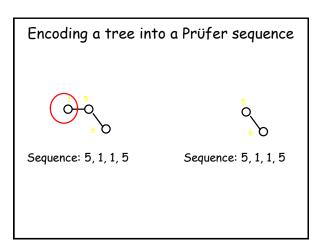


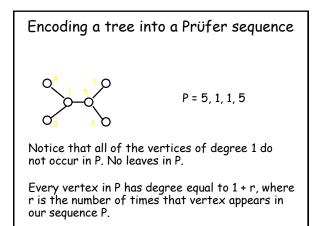


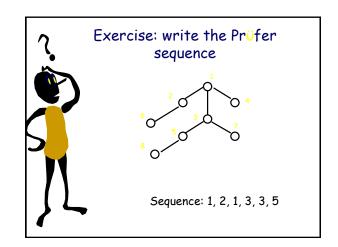












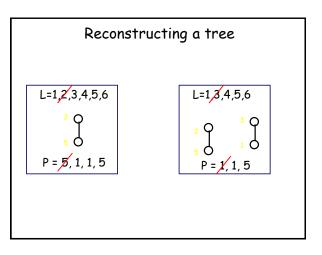
Reconstructing a tree

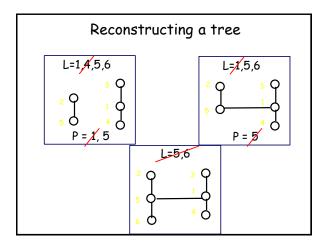
Given P = $\{a_1, \dots, a_{n-2}\}$ and the list L = $\{1, \dots, n\}$

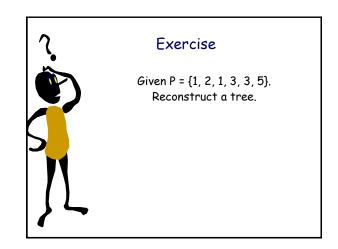
Let k be the smallest number in L that is not in P. Let a_j be the fist number in the Prüfer sequence P. Connect k and a_j with an edge. Remove k from L and a_i from P.

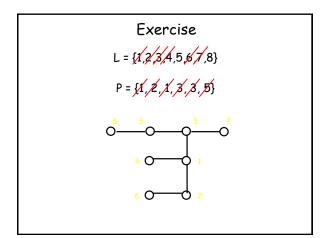
Repeat this process until all elements of P have been exhausting (n-2 times)

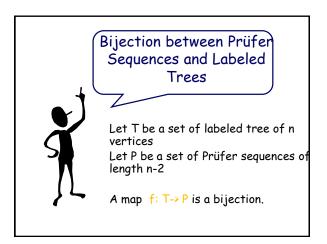
Connect the last two vertices in L with an edge.











A map f: T-> P is injective.

We need to show that two different trees T_1 , T_2 generate different Prüfer sequences. By Induction on the number of vertices.

Base case: n = 2, two vertices joined by an edge. Assume it's true for n, prove it for n+1.

Take the lowest-labeled leaf in T_1 and in T_2 .

Case 1: Those two leaves are different

Case 2: Same, but neighbors not

Case 3: Leaves and neighbors are the same

A map f: T-> P is surjective.

We need to show that any sequence P={ $a_1,...,a_{n-2}$ } generates at least one tree on L={1, ..., n} By Induction on the number of vertices.

Base case: n = 2, P = {}.

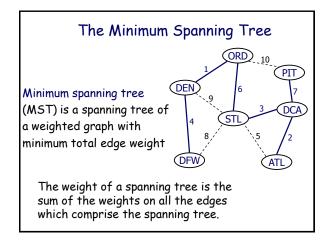
Assume it's true for n, prove it for n+1.

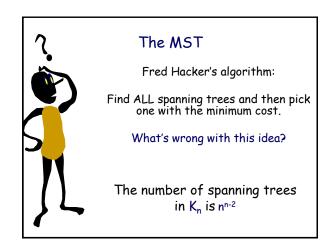
Take the lowest $v_k \in L \text{ s.t. } v_k \notin P$

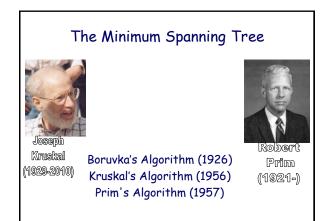
Consider P'=P\a_1 and L'= L\v_k. By IH there is T'.

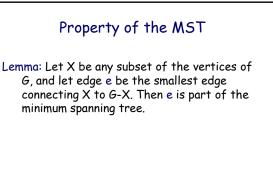
Form T from T' by adding v_k joined with a_1 .

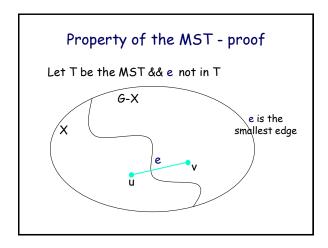
Since a_1 is internal, T is a tree.

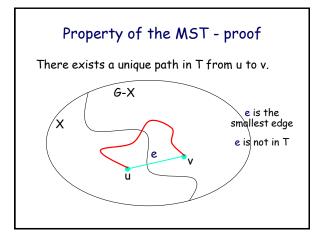


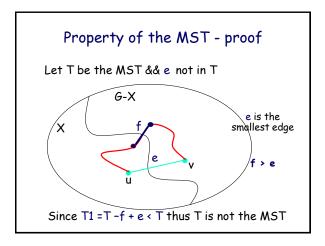


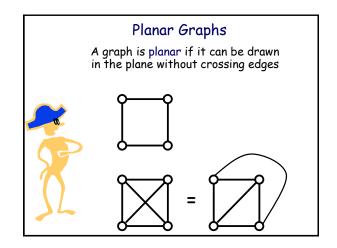


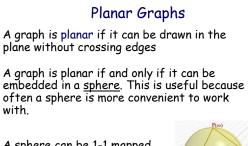




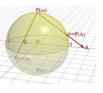


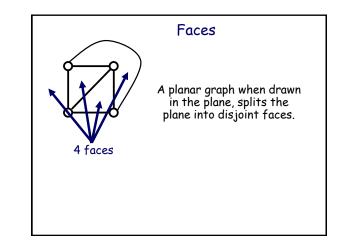


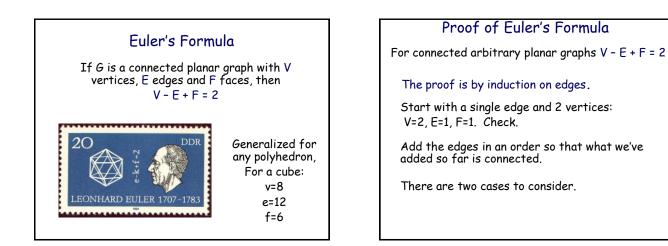


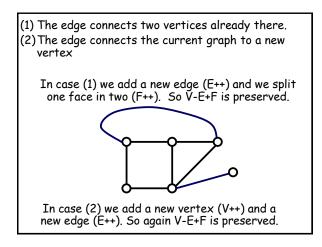


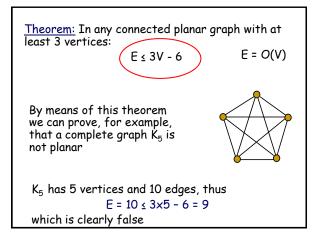
A sphere can be 1-1 mapped (except 1 point) to the plane and vice-versa. E.g. the stereographic projection:











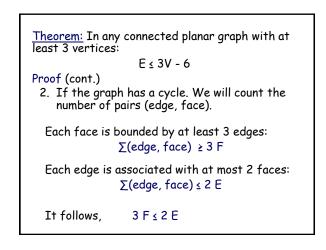
Theorem: In any connected planar graph with at least 3 vertices: E \leq 3V - 6

Proof.

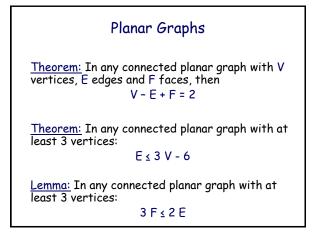
1. If the graph has no cycles,

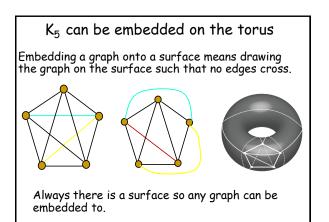
 $E = V-1 \le V \le V + (2V-6) = 3V - 6$,

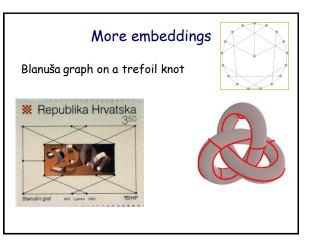
since $V \ge 3$, and therefore $2V-6 \ge 0$,

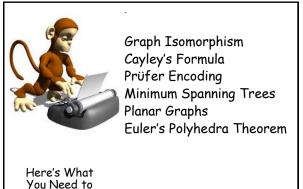


<u>Theorem</u>: In any connected planar graph with at least 3 vertices: $E \le 3V - 6$ Proof (cont.) We found, $3F \le 2E$ By Euler's theorem : 2 = V - E + F $6 = 3V - 3E + 3F \le 3V - 3E + 2E = 3V - E$ QED









Know...