

## Definition

A graph $G$ is a pair $(V, E)$ where
$V$ is a set of vertices (or nodes)
$E$ is a set of edges connecting the vertices

A self-loop is an edge that connects to the same vertex twice A multi-edge is a set of two or more edges that have the same two vertices
A graph is simple if it has no multi-edges or self-loops.

| Plan |
| :--- |
| Graph Representations |
| Counting Trees |
| Cayley's Formula |
| Prüfer Sequence |
| Minimum Spanning Trees |
| Planar Graphs |
| Euler's Polyhedra Theorem |

## More terms

Directed: an edge is an ordered pair of vertices Undirected: edge is unordered pair of vertices Weighted: (a cost associated with an edge) Path (is a sequence of no-repeated vertices) Cycle (the start and end vertices are the same) Acyclic
Connected or Disconnected
The degree of a vertex (in an undirected graph is the number of edges associated with it.)

## The handshaking theorem

Let $G=(V, E)$ be an undirected graph with $V$ vertices and $E$ edges. Then

$$
2 E=\sum_{x \in V} \operatorname{deg}(x)
$$

In a directed graph:


$$
E=\sum_{x \in V} \operatorname{indeg}(x)=\sum_{x \in V} \text { outdeg }(x)
$$

## Exercise

Given a graph with 7 vertices; 3 of them of degree two and 4 of degree one. Is this graph is connected?

$$
2 E=\sum_{x \in V} \operatorname{deg}(x)
$$

No, the graph has only 5 edges.

## Representing Graphs

Adjacency List
or
Adjacency Matrix
Vertex $X$ is adjacent to vertex $Y$ if and only if there is an edge $(X, Y)$ between them.

Adjacency List Representation



Theorem: Let $G$ be a graph with $V$ nodes and $E$ edges
The following are equivalent (TFAE) :

1. $G$ is a tree (connected, acyclic)
2. Every two nodes of $G$ are joined by a unique path
3. $G$ is connected and $V=E+1$
4. $G$ is acyclic and $V=E+1$
5. $G$ is acyclic and if any two non-adjacent nodes are joined by an edge, the resulting graph has exactly one cycle

To prove this, it suffices to show

$$
1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1
$$

$$
\begin{aligned}
& \text { We'll just show } \\
& 1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4
\end{aligned}
$$

and leave the rest to the reader

## $2 \Rightarrow 3 \quad$ 2. Every two nodes of $G$ are joined by a unique path

3. $G$ is connected and $V=E+1$
proof: (by strong induction)
Assume true for every graph with < $V$ vertices Let $G$ have $V$ nodes and let $x$ and $y$ be adjacent


Then $V=V_{1}+V_{2}=E_{1}+E_{2}+2=E+1$

Corollary: Every nontrivial tree has at least two vertices of degree 1 .

Proof (by contradiction):
Assume all but one of the vertices in the tree have degree at least 2. Can we?
In any graph, sum of the degrees $=2 \mathrm{E}$
Under our assumption $2 \mathrm{E}=\Sigma \mathrm{deg}_{\mathrm{i}} \geq 2(\mathrm{~V}-1)+1$
Then the total number of edges in the tree is at least $\mathrm{E} \geq(2 \mathrm{~V}-1) / 2=\mathrm{V}-1 / 2>\mathrm{V}-1$
Contradiction, since in a tree $E=V-1$
$1 \Rightarrow 2 \quad 1.6$ is a tree (connected, acyclic)
2. Every two nodes of $G$ are joined by a unique path

Proof: (by contradiction)
Assume $G$ is a tree that has two nodes connected by two different paths:


Then there exists a cycle!
$3 \Rightarrow 4 \quad 3 . G$ is connected and $V=E+1$
4. $G$ is acyclic and $V=E+1$

Proof: by contradiction
Assume, $G$ has a cycle with k vertices.


Start adding nodes and edges until you cover the whole graph. Number of edges in the graph will be at least $V$, since the cycle has $k$ vertices and $k$ edaes.

## Cayley's Formula

Using the above property, we can now begin to discuss Cayley's formula that tells us how many different trees we can construct on $n$ vertices.

How many labeled trees are there with three nodes?

Two labeled trees with the same set of labels are isomorphic iff
they have the same adjacency matrix.






## Graph Isomorphism

Definition. Two simple graphs $G$ and $H$ are isomorphic $G \cong H$ if there is a vertex bijection $V_{H^{\prime}}>V_{G}$ that preserves adjacency and non-adjacency structures.


Does not preserve adjacency


## Graph Isomorphism

The graph isomorphism problem has no known polynomial time algorithm which works for an arbitrary graph.


1->a, 2->e, 3->b, 4->f, 5->g, 6->c, 7->h, 8->d


How many labeled trees are there with five nodes?


5
labelings

$5 \times 4 \times 3$ labelings


5!/2 labelings

## 125 labeled trees

Cayley's Formula (1889)

The number of labeled trees on $n$ nodes is $\mathrm{n}^{n-2}$

Put another way, it counts the number of spanning trees of a complete graph

## Prüfer Encoding (1918)

We are going to find a bijection between the set of sequences and the set of labeled trees.

A Prüfer sequence is a sequence of $n-2$ numbers, each being one of the numbers 1 through $n$. We should initially note that indeed there are $\mathrm{n}^{n-2}$ Prüfer sequences for any given $n$.
bijection: $T(n) \rightarrow P(n-2)$

## Encoding a tree into a Prüfer sequence

Take a tree and label vertices from 1 to $n$ in any manner.



Take the vertex with the smallest label whose degree is equal to 1, delete it from the tree and write down the value of its only neighbor. Repeat this process until only two vertices remain.
So now we have a sequence of $n-2$ elements encoded from our tree.

## Encoding a tree into a Prüfer sequence



Sequence: 5,1


Sequence: 5,1,1

## Encoding a tree into a Prüfer sequence



Sequence:


Sequence: 5

## Encoding a tree into a Prüfer sequence




Sequence: 5, 1, 1, 5
Sequence: 5, 1, 1, 5

## Encoding a tree into a Prüfer sequence



Notice that all of the vertices of degree 1 do not occur in $P$. No leaves in $P$.

Every vertex in $P$ has degree equal to $1+r$, where $r$ is the number of times that vertex appears in our sequence $P$.

## Exercise: write the $\operatorname{Pr}$ fer

 sequence

Sequence: $1,2,1,3,3,5$

| Reconstructing a tree |
| :--- |
| Given $P=\left\{a_{1}, \ldots, a_{n-2}\right\}$ and the list $L=\{1, \ldots, n\}$ |
| Let $k$ be the smallest number in $L$ that is not in $P$. |
| Let $a_{j}$ be the fist number in the Prüfer sequence $P$. |
| Connect $k$ and $a_{j}$ with an edge. |
| Remove $k$ from $L$ and $a_{j}$ from $P$. |
| Repeat this process until all elements of $P$ have |
| been exhausting ( $n-2$ times) |
| Connect the last two vertices in $L$ with an edge. |


| Reconstructing a tree |
| :---: |
| $L=1,2,3,4,5,6$ <br> $P$ <br> $P=\varnothing p, 1,1,5$ |



## A map $f: T->P$ is injective.

We need to show that two different trees $T_{1}, T_{2}$ generate different Prüfer sequences.
By Induction on the number of vertices.
Base case: $n=2$, two vertices joined by an edge.
Assume it's true for $n$, prove it for $n+1$.
Take the lowest-labeled leaf in $T_{1}$ and in $T_{2}$.
Case 1: Those two leaves are different
Case 2: Same, but neighbors not
Case 3: Leaves and neighbors are the same

## A map $f$ : $T->P$ is surjective.

We need to show that any sequence $P=\left\{a_{1}, \ldots, a_{n-2}\right\}$ generates at least one tree on $L=\{1, \ldots, n\}$ By Induction on the number of vertices.

Base case: $n=2, P=\{ \}$.
Assume it's true for $n$, prove it for $n+1$.
Take the lowest $v_{k} \in L$ s.t. $v_{k} \notin P$
Consider $P^{\prime}=P \backslash a_{1}$ and $L^{\prime}=L \backslash v_{k}$. By $I H$ there is $T^{\prime}$.
Form $T$ from $T$ by adding $v_{k}$ joined with $a_{1}$. Since $a_{1}$ is internal, $T$ is a tree.

## The Minimum Spanning Tree

Minimum spanning tree (MST) is a spanning tree of a weighted graph with minimum total edge weight


The weight of a spanning tree is the sum of the weights on all the edges which comprise the spanning tree.


## The MST

Fred Hacker's algorithm:
Find ALL spanning trees and then pick one with the minimum cost.

What's wrong with this idea?

The number of spanning trees

$$
\text { in } K_{n} \text { is } n^{n-2}
$$

## Property of the MST

Lemma: Let $X$ be any subset of the vertices of $G$, and let edge $e$ be the smallest edge connecting $X$ to $G-X$. Then $e$ is part of the minimum spanning tree.


## Property of the MST - proof

Let $T$ be the MST \& \& e not in $T$


Since $T 1=T-f+e<T$ thus $T$ is not the MST

## Property of the MST - proof

There exists a unique path in $T$ from $u$ to $v$.


## Planar Graphs

A graph is planar if it can be drawn in the plane without crossing edges


## Planar Graphs

A graph is planar if it can be drawn in the plane without crossing edges

A graph is planar if and only if it can be embedded in a sphere. This is useful because often a sphere is more convenient to work with.

A sphere can be 1-1 mapped (except 1 point) to the plane and vice-versa. E.g. the stereographic projection:


Faces


A planar graph when drawn in the plane, splits the plane into disjoint faces.

(1) The edge connects two vertices already there.
(2) The edge connects the current graph to a new vertex

In case (1) we add a new edge ( $\mathrm{E}_{++}$) and we split one face in two ( $\mathrm{F}++$ ). So $V-E+F$ is preserved.


In case (2) we add a new vertex ( $\mathrm{V}++$ ) and a new edge $\left(E_{++}\right)$. So again $V-E+F$ is preserved.

## Proof of Euler's Formula

For connected arbitrary planar graphs $V-E+F=2$
The proof is by induction on edges.
Start with a single edge and 2 vertices: $V=2, E=1, F=1$. Check.

Add the edges in an order so that what we've added so far is connected.

There are two cases to consider.

Theorem: In any connected planar graph with at least 3 vertices:


By means of this theorem we can prove, for example, that a complete graph $K_{5}$ is not planar

$K_{5}$ has 5 vertices and 10 edges, thus

$$
E=10 \leq 3 \times 5-6=9
$$

which is clearly false

Theorem: In any connected planar graph with at least 3 vertices:

$$
E \leq 3 V-6
$$

Proof.

1. If the graph has no cycles,

$$
E=V-1 \leq V \leq V+(2 V-6)=3 V-6
$$

since $V \geq 3$, and therefore $2 V-6 \geq 0$,

Theorem: In any connected planar graph with at least 3 vertices:

$$
E \leq 3 V-6
$$

Proof (cont.)
2. If the graph has a cycle. We will count the number of pairs (edge, face).

Each face is bounded by at least 3 edges:

$$
\Sigma(e d g e, \text { face }) \geq 3 \mathrm{~F}
$$

Each edge is associated with at most 2 faces:

$$
\sum(\text { edge }, \text { face }) \leq 2 E
$$

It follows, $\quad 3 \mathrm{~F} \leq 2 \mathrm{E}$

Theorem: In any connected planar graph with at least 3 vertices:

$$
E \leq 3 V-6
$$

Proof (cont.) We found, 3 F $\leq 2 \mathrm{E}$
By Euler's theorem :

$$
2=V-E+F
$$

$$
6=3 V-3 E+3 F \leq 3 V-3 E+2 E=3 V-E
$$

QED

## Planar Graphs

Theorem: In any connected planar graph with $V$ vertices, $E$ edges and $F$ faces, then

$$
V-E+F=2
$$

Theorem: In any connected planar graph with at least 3 vertices:

$$
E \leq 3 V-6
$$

Lemma: In any connected planar graph with at least 3 vertices:
$3 F \leq 2 E$

## $\mathrm{K}_{5}$ can be embedded on the torus

Embedding a graph onto a surface means drawing the graph on the surface such that no edges cross.


Always there is a surface so any graph can be embedded to.

## More embeddings

Blanuša graph on a trefoil knot


