

Web Sites

http://www.andrew.cmu.edu/course/15-251

Calendar, Slides, Notes, Homeworks, Course Policy, Grades, ...
https://piazza.com/cmu/fall2013/15251

Questions, Comments, Announcements, ...

35%	Homework	(11, lowest one dropped)
10%	Quizzes	(12, lowest two dropped; no make-ups)
30%	Tests	(2 midterms)
25%	Final	

Homework

Homeworks roughly every week (see currently planned schedule on calendar). Out/due at 11:59pm on respective date.

Must be typeset submit pdf via "handin", returned via "handback" (read FAQ on website).

Homework Late Policy

You have 8 late days (total), but you cannot use more than 2 late days per homework.

Collaboration

You may work in a group of ≤ 4 people.
You must report who you worked with.
You must think about each of the problems by yourself for ≥ 30 minutes before discussing them with others.

You must write up all solutions by yourself.

Cheating

You MAY NOT
Share written work.

Get help from anyone besides your collaborators, staff.

Refer to solutions/materials from earlier versions of 251 or the web

Quizzes
Every Tuesday, beginning of class
The quiz will be DUE AT 3:10 pm.
Therefore, do NOT be late to class.
Tested on material from the previous 2-3 lectures.
These are designed to be easy, assuming
you are keeping up with the lectures.

Midterm tests

Designed to be doable in 1 hour.
You will have 1.5 hours.
"Semi-cumulative."

Given in lectures.
Oct 1, Nov. 5
Mark these dates on your calendar now!

How do we sort this stack?
How many flips do we need?

How do we sort this stack? How many flips do we need?

The chef at our place is sloppy: when he prepares pancakes, they come out all different sizes

When the waiter delivers them to a customer, he rearranges them (so that smallest is on top, and so on, down to the largest at the bottom)

He does this by grabbing several from the top and flipping them over, to perform a prefix reversal, repeating this as many times as necessary

How do we sort this stack? How many flips do we need?

How do we sort this stack? How many flips do we need?

\section*{| 5 |
| :--- |
| 2 |
| 3 |
| 4 |
| 1 |}

Best way to sort this stack?

Let X be the smallest number of flips that can sort this specific stack.

Is 4 a lower bound?
What would it take to show that?

Four Flips Are Necessary

If we could do it in three flips:
First flip has to put 5 on bottom, because...
Second flip has to bring 4 to the top, because...

$5^{\text {th }}$ Pancake Number

The cook chooses the "worst possible" stack of five pancakes (from $5!=120$), and the waiter sorts the stack using the "fewest possible" flips.

$$
P_{5}=\quad \begin{gathered}
\text { MAX over all 5-stacks } S \\
\text { of MIN \# of flips to sort } S
\end{gathered}
$$

$$
P_{3}=3
$$

To show $P_{3} \geq 3$?

1. Show a specific 3-stack.
2. Argue that every way
of sorting this stack uses
at least 3 flips.

To show $P_{3} \leq 3$?
Give a way of sorting every 3stack using at most 3 flips.

- Biggest one to bottom using ≤ 2 flips.
- Smallest one to top using ≤ 1 flip.

Pancake Number

$5^{\text {th }}$ Pancake Number	
	Upper Bound
To show $\mathrm{P}_{5} \geq 5$?	To show $\mathrm{P}_{5} \leq 5$?
1. Show a specific 5-stack. 2. Argue that every way of sorting this stack uses at least 5 flips.	Give a way of sorting every 5stack using at most 5 flips.

| Lower
 Bound | $n^{\text {th }}$ Pancake Number |
| :---: | :---: | :---: |
| Upper
 Bound | |
| and lower bound I can prove?" | |

Bring-to-top Method For n Pancakes

If $n=2$, at most one flip and we are done!
Otherwise, flip pancake n to the top and
then flip it to the bottom
Now use:

> Bring-To-Top Method for $n-1$ Pancakes

If $T(n)$ is the number of flips then

$$
\begin{gathered}
T(n)=2+T(n-1) \\
T(2)=1
\end{gathered}
$$

Bring-to-top Method For n Pancakes

$$
? \leq P_{n} \leq T(n)=2 n-3
$$

Observe,

$$
P_{5} \leq T(5)=7
$$

$$
? \leq P_{n} \leq 2 n-3
$$

Let's think about a lower bound for P_{n}

Breaking Apart Argument

Suppose a stack S has a pair of adjacent pancakes that will not be adjacent in the sorted stack

Any sequence of flips that sorts stack S must have one flip that inserts the spatula between that pair and breaks them apart

Each flip can achieve at most 1 "break-apart".

$$
n \leq P_{n}
$$

Suppose n is even
S contains n adjacent pairs that will need to be broken apart during any sequence that sorts it

Detail: This construction works when $n>=2$.
"Adjacent pair" includes bottom pancake and the plate.

$$
n \leq P_{n} \leq 2 n-3 \text { for } n>=3
$$

Upper and lower bounds are within a factor of 2 .

$$
n \leq P_{n}
$$

Suppose n is odd
S contains n pairs that will need to be broken apart during any sequence that sorts it
n
2
4 \quad Detail: This construction works 4
6 when $n>=3$.

Any Stack S to Any Stack T in $\leq P_{n}$
S: 4,3,5,1,2
$3,4,1,2,5$
T: 5,1,4,3,2

Hence, from ANY stack to ANY stack in $\leq 2 P_{n}$

Is This Really Computer Science?

Posed in Amer. Math. Monthly 82(1), 1975, by "Harry Dweighter" (haha).
aka Jacob Goodman, a computational geometer.

Is This Really Computer Science?
Discrete Mathematics 27(1), 1979
$(17 / 16) n \leq P_{n} \leq(5 / 3) n+5 / 3$
William H. Gates (Microsoft) Christos Papadimitriou (Berkeley)

"An (18/11)n Upper Bound For Sorting By Prefix Reversals"
Theoretical Computer Science 410(36), 2009
$(15 / 14) n \leq P_{n} \leq(18 / 11) n$
Upper and lower bounds are within a factor of 1.5
by B. Chitturi, W. Fahle, Z. Meng, L. Morales, C.O. Shields, I.H. Sudborough, W. Voit @ UT Dallas

"On the Diameter of the Pancake Network" Journal of Algorithms 25(1), 1997
$(15 / 14) n \leq P_{n} \leq(5 / 3) n+5 / 3$
by Hossain Heydari and Hal Sudborough

Burnt Pancakes

There are other variants of the problem: where the pancakes are burnt on one side, and the goal is not only to sort them but to also place them with the burnt side down.

The problem was introduced in the Gates \& Papadimitriou paper.

$$
(3 / 2) n-1 \leq B P_{n} \leq 2 n+3
$$

$(3 / 2) n \leq B P_{n} \leq 2 n-2$
"On The Problem Of Sorting Burnt Pancakes" Discrete Applied Math. 61(2), 1995
by David S. Cohen and Manuel Blum (cmu)

Application:

The Pancake Network

The Pancake Network

Nodes are named after the n ! different stacks of n pancakes

Put a link between two nodes if you can go between them with one flip

Pancake Network:
 Message Routing Delay

What is the maximum distance (a diameter) between two nodes in the pancake network?

P_{n}

Pancake Network: Reliability

If up to $n-2$ nodes get hit by lightning, the network remains connected, even though each node is connected to only $n-1$ others

The Pancake Network is optimally reliable for its number of nodes and links

High Level Point

Computer science is no more about computers than astronomy is about telescopes - E. Dijkstra

Computer Science is not merely about computers and programming, it is about mathematically modeling our world, and about finding better and better ways to solve problems

